Advertisement

Composition and Structure of Phytoplankton Communities in Coastal Environments with Anthropogenic Disturbance (Patagonia, Argentina)

  • Norma H. Santinelli
  • Alicia V. Sastre
  • Mónica N. Gil
  • José L. Esteves
Chapter

Abstract

The purpose of this study is to review as well as to compare environmental and phytoplankton data collected from coastal Patagonian ecosystems (Argentina) located at different latitudes and exposed not only to freshwater discharges (Chubut river in Chubut province, Deseado river in Santa Cruz province, Pipo and Olivia rivers in Tierra del Fuego province) but also to urban, industrial, and port activities related to the main cities on the Patagonian coast. The data analyzed were collected during the spring, summer, and fall of 1993, 1994, and 2001. The presence of Bacillariophyta, the dominant phylum in most environments, is the main characteristic of the composition and structure of phytoplankton community in the study area. A total of 127 taxa were identified, 9 of which are known to be potentially toxic species. Taxa richness was found to be highest in Nueva and Engaño Bays, the order of abundance being 106 cells L−1 in the majority of the environments of our study area. Blooms of Alexandrium tamarense and Pseudo-nitzschia cf. pseudodelicatissima were recorded in Nueva Bay in the summer of 1993, whereas blooms of Skeletonema costatum were recorded in Deseado Ría in the fall of 1994. Maximum biomass was recorded in Ushuaia Bay with 10 μg/L Chl a. N:P ratios indicated nitrogen limitation in the majority of the environments analyzed. Changes in the structure of the microalgal community, bloom occurrence, and the presence of organisms indicating environmental alterations associated with eutrophication events in the coastal zones could all be bioindicators of changes in water quality and incipient eutrophication processes in the studied environments.

Keywords

Phytoplankton Nutrients Eutrophication Toxic species Argentine coast 

Notes

Acknowledgments

This work has been carried out within the framework of the Program for the Implementation and Consolidation of the Integrated Patagonian Coastal Zone Management Plan (PMZCP), a project financed by the Global Environment Facility (GEF) through the United Nations Program for Development (UNDP) and implemented by the United Nations Office for Project Services (UNOPS) and Patagonia Natural Foundation (FPN) (Project ARG/02/G3).

References

  1. Achary SM, Panigrahi S, Satpathy K et al (2014) Nutrient dynamics and seasonal variation of phytoplankton assemblages in the coastal waters of southwest Bay of Bengal. Environ Monit Assess.  https://doi.org/10.1007/s10661-014-3812-8
  2. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrients sources. Composition. And consequences. Estuaries 25(4b):707–726Google Scholar
  3. Balech E (1995) The genus Alexandrium Halim (Dinoflagellate). Sherkin Island Marine Station, Cork, p 151Google Scholar
  4. Benavides HL, Prado S, Diaz F et al (1995) An exceptional bloom of Alexandrium catenella in the Beagle Channel. Argentina. In: Harmful Marine Algal Bloms. Proceedings of the Sixth International Conference on toxic Marine Phytoplankton, Nantes France, pp 113–119Google Scholar
  5. Bodeanu N (1992) Algal blooms and development of the main phytoplanktonic species at the Romanian Black Sea littoral in conditions of intensification of the eutrophication process. Eds Vollenweider RA, Marchetti R, Viviani R. Marine Coastal Eutrophication, pp 891–906Google Scholar
  6. Cadee GC (1992) Trends in Marsdiep phytoplankton. Netherlands. J Sea Res 20:143–149Google Scholar
  7. Casas G, Piriz ML (1996) Surveys of Undaria pinnatifida (Laminariales. Phaeophyta) in Golfo Nuevo. Argentina. Hydrobiologia 326/327:213–215CrossRefGoogle Scholar
  8. Cederwall H, Elmgren R (1990) Biological effects of eutrophication in the Baltic Sea, particularly in the coastal zone. Ambio 19:109–112Google Scholar
  9. Contreras F, Castañeda O, García A (1994) La clorofila-a como base para un índice trófico en lagunas costeras mexicanas. Anales Instituto. Ciencias del Mar y Limnología México UNAM, pp 55–66Google Scholar
  10. De la Lanza-Espino G, Hernández-Pulido S, Carvajal-Pérez JL (2000) Organismos indicadores de la calidad del agua y de la contaminación (bioindicadores). Plaza y Valdés, MéxicoGoogle Scholar
  11. Duarte CM (2009) Coastal eutrophication research: a new awareness. Hydrobiologia 629:263–269CrossRefGoogle Scholar
  12. Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Contribution no. 6 from the Institute of Marine. Science 12:196–206Google Scholar
  13. Esteves JL, Amín O (2005) Evaluación de la contaminación urbana de las bahías de Ushuaia. Encerrada y Golondrina. Informe Técnico del Proyecto Consolidación e Implementación del Plan de Manejo de la zona costera patagónica para la conservación de la biodiversidad, pp 1–69Google Scholar
  14. Esteves JL, Santinelli N, Sastre V (1992) A dinoflagellate bloom and P.S.P. Production associated with upwelling in Golfo Nuevo. Patagonia. Argentina. Hydrobiologia 242:115–122CrossRefGoogle Scholar
  15. Esteves JL, Solís M, Sastre V et al (1996a) Evaluación de la contaminación urbana de la bahía de San Antonio (Provincia del Río Negro). Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica (Puerto Madryn. Argentina). N° 20: 1–26Google Scholar
  16. Esteves JL, Solis M, Gil M et al (1996b) Dos Bahías Patagónicas: Bahía Nueva y Bahía Engaño. En Jorge Marcovecchio (Ed.): Pollution Processes in coastal environments. Chapter I General Surveys, pp 64–70Google Scholar
  17. Esteves JL, Gil MN, Commendatore M et al (1997) Evaluación de la contaminación urbana de la Ría de Deseado (provincia de santa cruz) Informes Técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica (Puerto Madryn. Argentina). N° 36: 1–59Google Scholar
  18. Ferrario M, Sastre V (1990) Ultraestructura. polimorfismo y ecología de Odontella aurita (Lyng.) Agardh (Bacillariophyceae) en el estuario del río Chubut. Argentina. En Anales II Congreso Latinoamericano de Ficología Marina. Revista de la Facultad de Oceanografía. Pesquería y Ciencias Alimentarias. Universidad Nacional Federico Villarreal. N° 2: 98–106 (Publicado en 1992)Google Scholar
  19. Finni TK, Kononen R, Olsonen et al (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30: 172–178Google Scholar
  20. Fu M, Wang Z, Li Y et al (2009) Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability. Cont Shelf Res 29:2178–2194CrossRefGoogle Scholar
  21. Gargett AE, Marra J (2002) Effects of upper ocean physical processes (turbulence, advection and air-sea interaction) on oceanic primary production. In: Robinson ARM, Rothschild BJ (eds) The sea, vol 12. John Wiley & Sons Inc., New York, pp 19–49Google Scholar
  22. Gil MN (2001) Eutroficación: el rol del nitrógeno en ecosistemas marinos costeros. Doctorado en Ingeniería Química Universidad Nacional del SurGoogle Scholar
  23. Gil MN, Torres A, Esteves JL (2005) Uptake of nitrogen by Ulva rigida (Chlorophyceae) when exposed to treated sewage effluent in culture. Hydrobiologia 532:39–43CrossRefGoogle Scholar
  24. Gil MN, Torres A, Amín O et al (2011) Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem. Beagle Channel (Southern Argentina). Mar Pollut Bull 62(1):201–207CrossRefPubMedGoogle Scholar
  25. Glibert GM (2017) Eutrophication. Harmful algae and biodiversity — challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2017.04
  26. González P, Esteves JL (2008) Relevamiento de la situación ambiental urbana en la zona costera patagónica. Informe Técnico N° 3 – 1a ed. – Puerto Madryn: Fundación Patagonia Natural, pp 1–57Google Scholar
  27. Guiry MD and Guiry GM (2017) AlgaeBase. In: World-wide electronic publication. National University of Ireland. Galway. http://www.algaebase.org. Accessed 30 July 2017
  28. Hallegraeff GM (2004) Harmful algae blooms: a global overview. In: Anderson H, Cembella (eds) Manual on harmful marine microalgae. Monographs on oceanographic methodology 11. UNESCO, Paris, pp 25–49Google Scholar
  29. Hasle GR, Fryxell GA (1970) Diatoms cleaning and mounting for light and electron microscopy. Trans Am Microsc Soc 89:468–474CrossRefGoogle Scholar
  30. INDEC (1991) Instituto Nacional de Estadísticas y Censo. Censo Nacional de Población 1991. http://www.indec.gob.ar. Accessed 15 July 2017
  31. INDEC (2012) Instituto Nacional de Estadísticas y Censo. Censo Nacional de Población 2012. http://www.sig.indec.gov.ar/censo2012/. Accessed 15 July 2017
  32. Jaanus A, Toming K, Hallfors S et al (2009) Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Eutrophication in coastal ecosystem. Hydrobiologia.  https://doi.org/10.1007/s10750-009-9768
  33. Lassus P, Chromérat N, Hess P et al (2016) Toxic and harmful microalgae of the world ocean / Micro-algues toxiques et nuisibles de l’ océan mundial. Denmark. International Society for the Study of Harmful Algae/Intergovernmental Oceanographic Commision of UNESCO. IOC Manuals and Guides 68Google Scholar
  34. Lund JWG, Kilpling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hidrobiologia 11(2):143–170CrossRefGoogle Scholar
  35. Moreira A, Seisdedo M, Leal S et al (2007) Composición y abundancia del fitoplancton de la bahía de Cienfuegos. Cuba. Invest Mars 28(2):97–109Google Scholar
  36. Nixon SW (2009) Eutrophication and macrosscope. Hydrobiologia 629:5–19.  https://doi.org/10.1007/s10750-009-9759-z CrossRefGoogle Scholar
  37. Paparazzo FE (2011) Distribución espacio-temporal de nutrientes en el Mar Argentino, Pasaje Drake y Península Antártica. Tasa de incorporación por fitoplancton Tesis Doctoral Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 187. www.digital.bl.fcen.uba.ar
  38. Paparazzo FE, Bianucci L, Schloss IR et al (2010) Cross-frontal distribution of inorganic nutrients and chlorophyll-a on the Patagonian continental shelf of Argentina during summer and fall. Rev Biol Mar Oceanogr 45(1):107–119CrossRefGoogle Scholar
  39. Piriz ML, Casas GM (1994) Occurrence of Undaria pinnatifida in Golfo Nuevo. Argentina. Applied Phycology Forum 10.4Google Scholar
  40. Relevante N, Gilmartin M (1988) Some observations on eutrophication associated changes in phototrophic and heterotrophic pico and nanoplankton assemblages in the northen Adriatic Sea. Rapp. Comm. Int. Mer Médit 32(2):49–66Google Scholar
  41. Regadera R (2006). Fitoplancton y clorofila-a como indicadores de eutrofización en la bahía de La Habana. CIM. La Habana. Cuba, pp 1–100Google Scholar
  42. Rodrigues RM, Williams NV, Le BP (2002) Inorganic nitrogen assimilation by picoplankton and whole plankton in a coastal ecosystem. Limnol Oceanogr 47:1608–1616CrossRefGoogle Scholar
  43. Santinelli NH (2008) Fitoplancton de un ambiente costero sometido a perturbación antrópica: Bahia Nueva, Pcia del Chubut. Tesis Doctoral, Facultad de Ciencias Naturales, Sede Trelew, Universidad Nacional de la Patagonia San Juan Bosco, Chubut, ArgentinaGoogle Scholar
  44. Santinelli NH, Esteves JL (1993) Características químicas y fitoplanctónicas del Estuario del río Chubut, Patagonia, Argentina. Natur Patag 1(1):22–34Google Scholar
  45. Santinelli N, Sastre V, Caille G (1990) Fitoplancton del Estuario Inferior del río Chubut (Patagonia Argentina) y su relación con la Salinidad y la Temperatura. Rev Asoc Cien Nat Lit 21(1):69–79Google Scholar
  46. Sastre V, Santinelli N, Caille G (1990) Diatomeas y Dinoflagelados del Estuario del río Chubut (Patagonia. Argentina). II Estructura de las Comunidades. Anales 2o Congreso Latinoamericano de Ficología Marina. Rev Fac Oceanogr Pesq Cien Alim 2:181–192Google Scholar
  47. Sastre V, Santinelli NH, Esteves JL et al (2001) Aspectos ecológicos de especies de Pseudo-nitzschia en aguas costeras patagónicas (Argentina): 217–235. En: Alveal K, Antezana T (eds) Sustentabilidad de la biodiversidad: un problema actual bases científico-técnicas. teorizaciones y proyecciones. ISBN: 956-227-257-5. Universidad de Concepción. Concepción. Chile. 896Google Scholar
  48. Vega Moreno D, Pérez-Marrero J, Morales J et al (2012) Phytoplankton functional community structure in Argentinian continental shelf determined by HPLC pigment signatures. Estuar Coast Shelf Sci 100:72–81CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Norma H. Santinelli
    • 1
  • Alicia V. Sastre
    • 1
  • Mónica N. Gil
    • 2
  • José L. Esteves
    • 3
  1. 1.Instituto de Investigación de Hidrobiología, Facultad de Ciencias Naturales y Ciencias de la SaludUniversidad Nacional de la Patagonia San Juan BoscoTrelewArgentina
  2. 2.Centro para el Estudio de Sistemas Marinos (CESIMAR)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina
  3. 3.Fundación Patagonia NaturalPuerto MadrynArgentina

Personalised recommendations