Advertisement

An Overview of the Medusozoa from the Southwestern Atlantic

  • Agustín Schiariti
  • María S. Dutto
  • André Carrara Morandini
  • Renato M. Nagata
  • Daiana Y. Pereyra
  • Francisco A. Puente Tapia
  • Luciana Díaz Briz
  • Gabriel Genzano
Chapter

Abstract

Medusozoans are critical components of coastal and marine ecosystems. They are ubiquitous, living from the surface to the bottom layers of the world’s oceans and tolerating a wide range of environmental conditions. They modulate food webs not only by consuming large quantities of ichthyoplankton and other zooplankton and acting as predators and competitors of varied pelagic organisms including fish but also by being consumed by other predators. Population outbreaks of these gelatinous animals commonly occur over a variety of spatiotemporal scales. These population explosion events have implications for the ecosystem and, usually, for human enterprise. Despite their ecological and socioeconomical importance, there is as yet no attempt to compile existing information on the medusozoan species of the Southwestern Atlantic (SWA). We provide here an overview of the information available regarding several aspects of Medusozoa in the SWA: the characteristics of their life cycles, life histories and “blooms,” and the ecological implications for SWA ecosystems. Guidelines for future research and perspectives on the field are also provided.

Keywords

Jellyfish Gelatinous zooplankton Medusae Ecological roles Societal impacts 

Notes

Acknowledgments

This paper was supported by INIDEP, CONICET PIP 2013-00615, FONCyT PICT 2013-1773, and FONCYT PICT 2015-1151. ACM was supported by grants 2010/50174–7, 2011/50242–5, and 2015/21007-9 São Paulo Research Foundation (FAPESP) and by CNPq (301039/2013–5 and 304961/2016-7). This is a contribution of NP-BioMar, USP. This is INIDEP contribution N° 2119.

References

  1. Acuña JL, López-Urrutia A, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629PubMedCrossRefGoogle Scholar
  2. Addad S, Exposito JY, Faye C et al (2011) Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs 9(6):967–983PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arai MN (1988) Interactions of fish and pelagic coelenterates. Can J Zool 66:1913–1927CrossRefGoogle Scholar
  4. Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–536CrossRefGoogle Scholar
  5. Arai MN (2009) The potential importance of podocyst to the formation of scyphozoan blooms: a review. Hydrobiologia 616:241–246CrossRefGoogle Scholar
  6. Ates RML (1988) Medusivorous fishes, a review. Der Zool Meded 62:29–42Google Scholar
  7. Álvarez Colombo G, Mianzan H, Madirolas A (2003) Acoustic characterization of gelatinous plankton aggregations: four case studies from the Argentine continental shelf. ICES J Mar Sci 60(3):650–657CrossRefGoogle Scholar
  8. Bastian T, Lilley MKS, Stokes D (2010) How fish surveys provide a 'backbone' for jellyfish research. ICES J Mar Sci 06:1–6Google Scholar
  9. Begon M, Harper JL, Townsend CR (1988) Ecología: Individuos, poblaciones y comunidades. Ediciones Omega SA, BarcelonaGoogle Scholar
  10. Behrends G, Schneider G (1995) Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Mar Ecol Prog Ser 127:39–45CrossRefGoogle Scholar
  11. Boero F (2013) Review of jellyfish blooms in the Mediterranean and Black Sea. Studies and reviews. General fisheries Commission for the Mediterranean, vol 92. Rome, FAO, p 53Google Scholar
  12. Boero F, Bouillon J, Piraino S et al (1997) Diversity of hydroidomedusan life cycles: ecological implications and evolutionary patterns. In: den Hartog JC (ed) Proc 6th international conference on Coelent Biology, pp 53–62Google Scholar
  13. Boero F, Bucci C, Colucci AMR et al (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter–feeding medusa. Mar Ecol 28:178–183CrossRefGoogle Scholar
  14. Boero F, Bouillon J, Gravili C et al (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310CrossRefGoogle Scholar
  15. Bonaldo RB, Krajewski JP, Sazima I (2004) Does the association of young fishes with jellyfishes protect from predation? A report on a failure due to damage to the jellyfish. Neotrop Ichthyol 2:103–105CrossRefGoogle Scholar
  16. Bouillon J (1987) Considerations sur le développment des Narcoméduses et sur leur position phylogénétique. Indo–Malayan Zool 4:189–278Google Scholar
  17. Bouillon J, Gravili C, Pagès F et al (2006) An introduction to Hydrozoa. Mém Mus Natl Hist Nat 194:1–591Google Scholar
  18. Brodeur RD, Mills CE, Overland JE et al (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8:296–306CrossRefGoogle Scholar
  19. Brodeur RD, Sugisaki H, Hunt Jr GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103CrossRefGoogle Scholar
  20. Brotz L, Pauly D (2017) Studying jellyfish fisheries: toward accurate national catch reports and appropriate methods for stock assessments. In: Mariottini GL (ed) Jellyfish: ecology, distribution patterns and human interactions. Nova Publishers, Hauppauge, pp 313–329Google Scholar
  21. Brotz L, Schiariti A, López-Martínez J et al (2017) Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds. Rev Fish Biol Fish 27:1–29CrossRefGoogle Scholar
  22. Burnett JW (1991) Jellyfish envenomation syndromes worldwide. MAP Tech Rep Ser, vol 47. UNEP, Athens, pp 227–235Google Scholar
  23. Cabreira AG, Madirolas A, Álvarez-Colombo G et al (2006) Acoustic study of the Río de la Plata estuarine front. ICES J Mar Sci 63:1718–1725CrossRefGoogle Scholar
  24. Carré D (1969) Étude histologique du développement de Nanomia bijuga (Chiaje, 1841), siphonophore physonecte, Agalmidae. Cah Biol Mar 10:325–341Google Scholar
  25. Carré C, Carré D (1991) A complete life cycle of the calycophoran siphonophore Muggiaea kochi (will) in the laboratory, under different temperature conditions: ecological implications. Philos Trans R Soc Lond B 334:27–32CrossRefGoogle Scholar
  26. Carrette T, Alderslade P, Seymour J (2002) Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40(11):1547–1551PubMedCrossRefGoogle Scholar
  27. Carrizo SS, Schiariti A, Nagata RM et al (2016) Preliminary observations on ephyrae predation by Lychnorhiza lucerna medusa (Scyphozoa; Rhizostomeae). Der Zool Gart 85(1):74–83CrossRefGoogle Scholar
  28. Chace FA (1969) A new genus and five new species of shrimps (Decapoda: Palaemonidae, Pontoniinae) from the Western Atlantic. Crustaceana (Leiden) 16(3):251–272CrossRefGoogle Scholar
  29. Chiaverano L, Mianzan H, Ramírez F (2004) Gonad development and somatic growth patterns of Olindias sambaquiensis (Limnomedusae, Olindiidae). Hydrobiologia 530(531):373–381Google Scholar
  30. Chiaverano LM, Graham WM, Costello JH (2015) Parasites alter behavior, reproductive output, and growth patterns of Aurelia medusae in a marine lake. Mar Ecol Prog Ser 540:87–98CrossRefGoogle Scholar
  31. Colin SP, Costello JH, Graham WM (2005) Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnol Oceanogr 50(4):1264–1268CrossRefGoogle Scholar
  32. Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432CrossRefGoogle Scholar
  33. Condon RH, Steinberg DK, del Giorgio PA (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci 108(25):10225–10230PubMedCrossRefGoogle Scholar
  34. Costello J, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127(3):265–290CrossRefGoogle Scholar
  35. Daly M, Brugler M, Cartwright P et al (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182Google Scholar
  36. Dawson MN, Hamner WM (2009) A character–based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616(1):193–215CrossRefGoogle Scholar
  37. Delannoy CMJ, Houghton JDR, Fleming NEC et al (2011) Mauve Stingers (Pelagia noctiluca) as carriers of the bacterial fish pathogen Tenacibaculum maritimum. Aquaculture 311:255–257CrossRefGoogle Scholar
  38. Díaz Briz LM (2014) Rol del Plancton Gelatinoso en el Mar Argentino: ¿Cuán importante es en la trama trófica marina? Doctoral Thesis. Universidad Nacional de Mar del Plata, Mar del Plata: Departamento de Ciencias Marinas. 150 ppGoogle Scholar
  39. Díaz Briz LMD, Martorelli SR, Genzano GN et al (2012) Parasitism (Trematoda, Digenea) in medusae from the southwestern Atlantic Ocean: medus hosts, parasites prevalences, and ecological implications. Hydrobiologia 690(1):215–226CrossRefGoogle Scholar
  40. Díaz Briz LM, Martorelli SR, Genzano G (2015) The parasite Monascus filiformis (Trematoda, Digenea, Fellodistomidae) on Stromateus brasiliensis (Pisces, Perciformes, Stromateidae): possible routes of transmission involving jellyfish. J Mar Biol Assoc UK 96(7):1483–1489CrossRefGoogle Scholar
  41. Díaz Briz LM, Sánchez F, Mari N (2017) Gelatinous zooplankton (ctenophores, salps and medusae): an important food resource of fishes in the temperate SW Atlantic Ocean. Mar Biol Res 13(6):630–644CrossRefGoogle Scholar
  42. Dittrich B (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea. Helgoländer Wiss Meeresunters 42:79–98CrossRefGoogle Scholar
  43. Doyle TK, De Haas H, Cotton D et al (2008) Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. J Plankton Res 30:963–968CrossRefGoogle Scholar
  44. Doyle TK, Hays GC, Harrod C et al (2014) Ecological and societal benefits of jellyfish. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 105–127CrossRefGoogle Scholar
  45. Dutto MS, Genzano GN, Schiariti A et al (2017) Medusae and ctenophores from the Bahía Blanca Estuary and neighboring inner shelf (Southwest Atlantic Ocean, Argentina). Mar Biodivers Rec 10(1):14CrossRefGoogle Scholar
  46. Estrades A, López-Mendilaharsu M, Fallabrino A (2007) Dermochelys coriacea (Leatherback Sea turtle) diet. Herpetolo Rev 38:330Google Scholar
  47. Fancett MS (1988) Diet and prey selectivity of scyphomedusae from Port Philip Bay, Australia. Mar Biol 98:503–509CrossRefGoogle Scholar
  48. Fautin DG (2002) Reproduction of Cnidaria. Can J Zool 80:1735–1754CrossRefGoogle Scholar
  49. Freitas JC, Schiozer WA, Malpezzi ELA (1995) A case of envenoming by Portuguese man–of–war from the Brazilian coast. Toxicon 33:859–861PubMedCrossRefGoogle Scholar
  50. Gasca R, Hoover R, Haddock SHD (2015) New symbiotic associations of hyperiid amphipods (Peracarida) with gelatinous zooplankton in deep waters off California. J Mar Biol Assoc UK 95:503–511CrossRefGoogle Scholar
  51. Gemmell BJ, Costello JH, Colin SP et al (2013) Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc Natl Acad Sci U S A 110(44):17904–17909PubMedPubMedCentralCrossRefGoogle Scholar
  52. Genzano GN, Schiariti A, Mianzan HW (2014) Cnidaria. In: Calcagno JA (ed) Los Invertebrados Marinos. Fundación Félix de Azara, Buenos Aires, pp 67–85Google Scholar
  53. Giangrande A, Geraci S, Belmonte G (1994) Life–cycle and life–history diversity in marine invertebrates and the implications in community dynamics. Oceanogr Mar Biol Annu Rev 32:305–333Google Scholar
  54. Gonçalves GRL, Wolf MR, da Costa RC et al (2016) Decapod crustacean associations with scyphozoan jellyfish (Rhizostomeae: Pelagiidae) in the Southeastern Brazilian coast. Symbiosis 69(3):193–198CrossRefGoogle Scholar
  55. Gonzalez Carman V, Botto F, Gaitán E et al (2013) A jellyfish diet for the herbivorous green turtle Chelonia mydas in the temperate SW Atlantic. Mar Biol 161(2):339–349CrossRefGoogle Scholar
  56. Gopakumar G, Madhu K, Jayashankar R et al (2008) Live feed research for larviculture of marine finfish and shellfish. Mar Fisher Infor Serv T&R Ser 197:1–6Google Scholar
  57. Graham WM, Martin DL, Felder DL et al (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69CrossRefGoogle Scholar
  58. Graham WM, Gelcich S, Robinson KL et al (2014) Linking human well–being and jellyfish: ecosystem services, impacts, and societal responses. Front Ecol Environ 12(9):515–523CrossRefGoogle Scholar
  59. Greve W (1994) The 1989 German Bight invasion of Muggiaea atlantica. ICES J Mar Sci 51:355–358CrossRefGoogle Scholar
  60. Haddad V Jr (2003) Aquatic animals of medical importance in Brazil. Rev Soc Bras Med Trop 36(5):591–597CrossRefGoogle Scholar
  61. Haddad V Jr (2008) Animais aquáticos potencialmente perigosos do Brasil; guia médico e biológico. Editora Roca, São Paulo, p 145Google Scholar
  62. Haddad V Jr, JLC C, da Silveira FL (2001) Seabather’s eruption: report of five cases in Southeast region of Brazil. Rev Inst Med Trop São Paulo 43:171–172PubMedCrossRefGoogle Scholar
  63. Haddad Jr V, Silveira FL, Cardoso JLC et al (2002) A report of 49 cases of cnidarian envenoming from southeastern Brazilian coastal waters. Toxicon 40:1445–1450CrossRefGoogle Scholar
  64. Haddad Jr V, Lupi O, Lonza JP et al (2009) Tropical dermatology: marine and aquatic dermatology. J Am Acad Dermatol 61(5):733–750CrossRefGoogle Scholar
  65. Haddad Jr V, Silveira FL, Migotto AE (2010) Skin lesions in envenoming by cnidarians (Portuguese man of war and jellyfish): etiology and severity of accidents on the Brazilian coast. Rev Inst Med Trop São Paulo 52:47–50CrossRefGoogle Scholar
  66. Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiol 530/531:549–556. In: Fautin DG, Westfall JA, Cartwright P et al (eds) Coelenterate biology: trends in research on Cnidaria and Ctenophora. Kluwer Academic Publishers, Dordrecht, pp 549–556Google Scholar
  67. Hansson LJ, Moeslund O, Kiørboe T et al (2005) Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar Ecol Prog Ser 304:117–131CrossRefGoogle Scholar
  68. Harrison NM (1984) Predation on jellyfish and their associates by seabirds. Limnol Oceanogr 29(6):1335–1337CrossRefGoogle Scholar
  69. Hay SJ, Hislop JRG, Shanks AM (1990) North Sea Scyphomedusae; summer distribution, estimated biomass and significance particularly for 0–group gadoid fish. Neth J Sea Res (1/2):113–130Google Scholar
  70. Houghton JD, Doyle TK, Wilson MW et al (2006) Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8):1967–1972PubMedCrossRefGoogle Scholar
  71. Hsieh Y–HP, Rudloe J (1994) Potential of utilizing jellyfish as food in western countries. Trends Food Sci Technol 5:225–229CrossRefGoogle Scholar
  72. Hsieh Y–HP, Leong F–M, Rudloe J (2001) Jellyfish as food. Hydrobiologia 451:11–17CrossRefGoogle Scholar
  73. Huang Y–W (1986) The processing of Cannonball jellyfish (Stomolophus meleagris) and its utilization. Proceedings of the 11th annual conference of the tropical and subtropical fisheries technological society of de Americas, Tampa, Florida, 13–16 Jan 1986, pp 141–146Google Scholar
  74. Huang Y–W (1988) Cannonball jellyfish (Stomolophus meleagris) as food resource. J Food Sci 53(2):341–343CrossRefGoogle Scholar
  75. Jarms G (2010) The early life history of Scyphozoa with emphasis on Coronatae. Verh Naturwiss Ver Hamburg 45:17–31Google Scholar
  76. Kass-Simon G, Scappaticci AA Jr (2002) The behavioral and developmental physiology of nematocysts. Can J Zool 80:1772–1794CrossRefGoogle Scholar
  77. Kawahara M, Ohtsu K, Uye SI (2013) Bloom or non–bloom in the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae): roles of dormant podocysts. J Plankton Res 35(1):213–217CrossRefGoogle Scholar
  78. Kingsford MJ, Mooney CJ (2014) The ecology of box jellyfishes (Cubozoa). In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 267–302CrossRefGoogle Scholar
  79. Kingsford MJ, Pitt KA, Gillanders BM (2000) Management of jellyfish fisheries, with special reference to the order Rhizostomeae. Oceanogr Mar Biol Annu Rev 38:85–156Google Scholar
  80. Kirkpatrick PA, Pugh PR (1984) Siphonophores and Velellids: keys and notes for the identification of the species. In: Brill EJ, Backhuys W (eds) Synopses of the British Fauna (new series), vol 29. The Linnean Society of London and The Estuarine and Brackish–Water Sciences Association, Leiden, p 154Google Scholar
  81. Kitamura M, Omori M (2010) Synopsis of edible jellyfishes collected from Southeast Asia, with notes on jellyfish fisheries. Plankon Benthos Res 5(3):106–118CrossRefGoogle Scholar
  82. Kokelj F, Mianzan H, Avian M et al (1993) Dermatitis due to Olindias sambaquiensis: a case report. Cutis 51(5):339–342PubMedGoogle Scholar
  83. Kremer BP (2001) Opportunistic lifestyles of the gelatinous and abundant: what gives a species “the right stuff”? In: Briand F (ed) CIESM Workshop Series “Gelatinous zooplankton outburst: theory and practice”, Naples, 29 August–1 September, 14, pp 87–92Google Scholar
  84. Lange J, Tai M, Kaiser R (2016) Husbandry of jellyfish, from the beginning until today. Der Zool Gart 85:52–63CrossRefGoogle Scholar
  85. Larson RJ (1987) Trophic ecology of planktonic gelatinous predators in Saanich Inlet, British Columbia: diets and prey selection. J Plankton Res 9(5):811–820CrossRefGoogle Scholar
  86. Larson RJ, Mills CE, Harbison GR (1989) In situ foraging and feeding behaviour of narcomedusae (Cnidaria: Hydrozoa). J Mar Biol Assoc UK 69(4):785–794CrossRefGoogle Scholar
  87. Laval P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr Mar Biol Annu Rev 18:11–56Google Scholar
  88. Leoni V, González S, Ortega L et al (2016) Tamoya haplonema (Cnidaria: Cubozoa) from Uruguayan and adjacent waters: oceanographic context of new and historical findings. Mar Biodivers Rec 9(1):92CrossRefGoogle Scholar
  89. Lucas CH, Dawson MN (2014) What are jellyfishes and thaliaceans and why do they bloom? In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 9–44CrossRefGoogle Scholar
  90. Lucas CH, Gelcich S, Uye SI (2014) Living with jellyfish: management and adaptations strategies. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 129–150CrossRefGoogle Scholar
  91. Lynam CP, Hay SJ, Brierley AS (2005) Jellyfish abundance and climate variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. J Mar Biol Assoc UK 85:435–450CrossRefGoogle Scholar
  92. Macchi GJ, Schiariti A (2016). Taller sobre estudios de zooplancton, en el marco del Proyecto Reclutamiento del Efectivo Patagónico de Merluza (REC). Informe de Gestión N°13. INIDEP. Dirección: Pesquerías Pelágicas y Ambiente Marino; Programa: Ambiente Marino y Ecosistemas Pesqueros, p 6Google Scholar
  93. Mackie GO (2002) What’s new in cnidarian biology? Can J Zool 80:1649–1653CrossRefGoogle Scholar
  94. Mansueti R (1963) Symbiotic behavior between small fishes and jellyfishes, with new data on that between the stromateid, Peprilus alepidotus, and the scyphomedusae, Chrysaora quinquecirrha. Copeia 1:40–80CrossRefGoogle Scholar
  95. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebr Biol 123(1):23–42CrossRefGoogle Scholar
  96. Marques AC, Morandini AC, Migotto AE (2003) Synopsis of knowledge on cnidaria medusozoa from Brazil. Biota Neotrop 3(2):1–18CrossRefGoogle Scholar
  97. Marques AC, Haddad Jr V, Rodrigo L et al (2014) Jellyfish (Chrysaora lactea, Cnidaria, Semaeostomeae) aggregations in southern Brazil and consequences of stings in humans. Lat Am J Aquat Res 42(5):1194–1199CrossRefGoogle Scholar
  98. Martinelli Filho JE, Stampar SN, Morandini AC et al (2008) Cleaner shrimp (Caridea: Palaemonidae) associated with scyphozoan jellyfish. Vie Milieu 58:133–140Google Scholar
  99. McInnes JC, Alderman R, Lea MA et al (2017) High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Mol Ecol 26(18):4831–4845PubMedCrossRefGoogle Scholar
  100. Mianzan HW (1986) Estudio sistemático y bioecológico de algunas medusas Scyphozoa de la región subantártica. PhD thesis, Universidad Nacional de La Plata, Argentina, pp 196Google Scholar
  101. Mianzan HW, Olague G, Montero R (1988) Scyphomedusae de las aguas uruguayas. Spheniscus 6:1–9Google Scholar
  102. Mianzan H, Sorarrain D, Burnett JW et al (2000) Mucocutaneous junctional and flexural paresthesias caused by the holoplanktonic trachymedusa Liriope tetraphylla. Dermatology 201(1):46–48PubMedCrossRefGoogle Scholar
  103. Mianzan HW, Fenner PJ, Cornelius PFS et al (2001) Vinegar as a disarming agent to prevent further discharge of the nematocysts of the stinging hydromedusa Olindias sambaquiensis. Cutis 68:45–48PubMedGoogle Scholar
  104. Mianzan H, Quiñones J, Palma S et al (2014) Chrysaora plocamia: A poorly understood jellyfish from South American waters. In: Pitt KA, Lucas CH (eds) Jellyfish blooms. Springer, Dordrecht, pp 219–236CrossRefGoogle Scholar
  105. Mills CE (1995) Meduase, shiphonophores and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52:575–581CrossRefGoogle Scholar
  106. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68CrossRefGoogle Scholar
  107. Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle – the “hydrozoan” Microhydrulalimopsicola is an early life stage of the staurozoan Haliclystus antarcticus. PLoS One 5.  https://doi.org/10.1371/journal.pone.0010182
  108. Mitchell SO, Baxter EJ, Holland C et al (2012) Development of a novel histopathological gill scoring protocol for assessment of gill health during a longitudinal study in marine–farmed Atlantic salmon (Salmo salar). Aquac Int 20(5):813–825CrossRefGoogle Scholar
  109. Miyajima Y, Masuda R, Kurihara A et al (2011) Juveniles of threadsail file–fish, Stephanolepis cirrhifer, can survive and grow by feeding on moon jellyfish Aurelia aurita. Fish Sci 77(1):41–48CrossRefGoogle Scholar
  110. Montgomery L, Seys J, Mees J (2016) To pee, or not to pee: a review on envenomation and treatment in European jellyfish species. Mar Drugs 14(7):127PubMedCentralCrossRefGoogle Scholar
  111. Morandini AC (2003) Estrutura populacional de Chrysaora lactea e Lychnorhiza lucerna (Cnidaria; Scyphozoa) em amostras de plâncton, com a redescrição das espécies. PhD thesis. Universidade de São Paulo, São Pablo, p 115Google Scholar
  112. Morandini AC, Martorelli SR, Marques AC et al (2005) Digenean metacercaria (Trematoda, Digenea, Lepocreadiidae) parasitizing “coelenterates” (Cnidaria, Scyphozoa and Ctenophora) from southeastern Brazil. Braz J Oceanogr 53:39–45CrossRefGoogle Scholar
  113. Morandini AC, Medina M, Collins AG (2014) Eumetazoans. The emergence of tissues and guts. In: Vargas P, Zardoya R (eds) The tree of life. Sinauer Associates Inc Publishers, Sunderland, pp 207–216Google Scholar
  114. Morandini AC, Custódio MR, Marques AC (2016a) Phylum Porifera and Cnidaria. In: Gopalakrishnakone P, Haddad Jr V, Kem WR, Tubaro A, Kim E (eds) Marine and freshwater toxins. Springer, Dordrecht, pp 287–316CrossRefGoogle Scholar
  115. Morandini AC, Schiariti A, Stampar SN et al (2016b) Succession of generations is still the general paradigm for scyphozoan life cycles. Bull Mar Sci 92(3):343–351CrossRefGoogle Scholar
  116. Moreira MGBS (1961) Sobre Mastigias scintillae sp. nov. (Scyphomedusae, Rhizostomeae) das costas do Brasil. Bol Inst Oceanogr USP 11:5–30CrossRefGoogle Scholar
  117. Mosovich JH, Young P (2012) Picadura de medusa Olindias sambaquiensis: Análisis de 49 casos. Medicina 72(5):380–388PubMedGoogle Scholar
  118. Nagata RM (2015) Bases morfo–funcionais da alimentação e o papel trófico de Lychnorhiza lucerna (Scyphozoa, Rhizostomeae). PhD thesis. Universidade de São Paulo, São Paulo, p 172Google Scholar
  119. Nagata RM, Haddad MA, Nogueira Jr M (2009) The nuisance of medusae (Cnidaria, Medusozoa) to shrimp trawls in central part of southern Brazilian Bight, from the perspective of artisanal fishermen. Pan–Am. J Aquat Sci 4:312–325Google Scholar
  120. Nagata RM, Morandini AC, Colin SP et al (2016) Transitions in morphologies, fluid regimes, and feeding mechanisms during development of the medusa Lychnorhiza lucerna. Mar Ecol Prog Ser 557:145–159CrossRefGoogle Scholar
  121. Nogueira Jr M, Haddad MA (2005) Lychnorhiza lucerna Haeckel (Scyphozoa, Rhizostomeae) and Libinia ferreirae Brito Capello (Decapoda, Majidae) association in southern Brazil. Rev Brasil Zool 22:908–912CrossRefGoogle Scholar
  122. Nogueira Jr M, Haddad MA (2008) The diet of Cubomedusae (Cnidaria, Cubozoa) in southern Brazil. Braz J Oceanogr 56(3):157–164CrossRefGoogle Scholar
  123. Nogueira Jr M, Silva JL (2005) Associações entre medusas (Cnidaria) e isópodos (Crustacea) nos litorais do Paraná e Santa Catarina, Brasil. Acta Biol Par 34:127–138Google Scholar
  124. Nogueira Jr M, Díaz Briz L, Haddad MA (2013) New records of Opechona sp. metacercariae (Digenea: Trematoda) on hydromedusae from South Brazil. Mar Biodivers Rec 6:1–4CrossRefGoogle Scholar
  125. Nogueira Jr M, DíazBriz LM, Haddad MA (2015) Monthly and inter–annual variations of Opechona sp. (Digenea: Lepocreadiidae) parasitizing scyphomedusae off southern Brazil. Mar Biol 162:391–400CrossRefGoogle Scholar
  126. Ohtsuka S, Koike K, Lindsay D et al (2009) Symbionts of marine medusae and ctenophores. Plank Benth Res 4:1–13CrossRefGoogle Scholar
  127. Oliveira O, Araújo E, Ayón P et al (2016) Census of Cnidaria (Medusozoa) and Ctenophora from South American marine waters. Zootaxa 4194:1–256CrossRefGoogle Scholar
  128. Omori M, Kitamura M (2004) Taxonomic review of three Japanese species of edible jellyfish (Scyphozoa: Rhizostomeae). Plankton Biol Ecol 51:36–51Google Scholar
  129. Omori M, Nakano E (2001) Jellyfish fisheries in Southeast Asia. Hydrobiologia 451:19–26CrossRefGoogle Scholar
  130. Osborn DA (2000) Cnidarian “Parasites” on Solmissus incisa, a Narcomedusa. Sci Mar 64:157–163CrossRefGoogle Scholar
  131. Pauly D, Graham W, Libralato S et al (2009) Jellyfish in ecosystems, online databases and ecosystem models. Hydrobiologia 616:67–85CrossRefGoogle Scholar
  132. Phillips N, Eagling L, Harrod C et al (2017) Quacks snack on smacks: mallard ducks (Anas platyrhynchos) observed feeding on hydrozoans (Velella velella). Plankon Benthos Res 12(2):143–144CrossRefGoogle Scholar
  133. Piraino S, Boero F, Aeschbach B et al (1996) Reversing the life cycle: Medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190:302–312PubMedCrossRefGoogle Scholar
  134. Pitt KA, Koop K, Rissik D (2005) Contrasting contributions to inorganic nutrient recycling by the co–occurring jellyfishes, Catostylus mosaicus and Phyllorhiza punctata (Scyphozoa, Rhizostomeae). J Exp Mar Biol Ecol 315:71–86CrossRefGoogle Scholar
  135. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149CrossRefGoogle Scholar
  136. Puente Tapia FA, Gasca R, Genzano G et al New records of association between Brachyscelus rapacoides (Arthropoda: Amphipoda) and medusae (Cnidaria: Scyphozoa and Hydrozoa) from São Sebastião Channel, SE Brazil. Mar Biodivers (submitted)Google Scholar
  137. Purcell JE (1981) Dietary composition and diel feeding patterns of epipelagic siphonophores. Mar Biol 65(1):83–90CrossRefGoogle Scholar
  138. Purcell JE (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216(217):335–342CrossRefGoogle Scholar
  139. Purcell JE (1997) Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Ann l’Inst Océanogr 73(2):125–137Google Scholar
  140. Purcell JE (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44CrossRefGoogle Scholar
  141. Purcell JE (2003) Predation on zooplankton by large jellyfish Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar Ecol Prog Ser 246:137–152CrossRefGoogle Scholar
  142. Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large–scale research. Hydrobiologia 616:23–50Google Scholar
  143. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44CrossRefGoogle Scholar
  144. Purcell JE, Grover JJ (1990) Predation and food limitation as causes of mortality in larval herring at a spawning ground in British Columbia. Mar Ecol Prog Ser 59:55–61CrossRefGoogle Scholar
  145. Purcell JE, White JR, Roman MR (1994) Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol Oceanogr 39:263–278CrossRefGoogle Scholar
  146. Purcell JE, Uye S–i, Lo W–T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174CrossRefGoogle Scholar
  147. Purcell JE, Baxter EJ, Fuentes V (2013) Jellyfish as products and problems for aquaculture. In: Allan G, Burnell G (eds) Advances in aquaculture hatchery technology, Woodhead publishing series in food science, technology and nutrition, vol 242. Woodhead Publishing, Cambridge, pp 404–430CrossRefGoogle Scholar
  148. Resgalla C Jr, Rosseto AL, Haddad V Jr (2011) Report of an outbreak of stings caused by Olindias sambaquiensis in Southern Brazil. Braz J Oceanogr 59:391–396CrossRefGoogle Scholar
  149. Riascos JM, Villegas V, Cáceres I et al (2012) Patterns of a novel association between the scyphomedusa Chrysaora plocamia and the parasitic anemone Peachia chilensis. J Mar Biol Assoc UK 93:919–923CrossRefGoogle Scholar
  150. Riascos JM, Villegas V, Pacheco AS (2014) Diet composition of the large scyphozoan jellyfish Chrysaora plocamia in a highly productive upwelling Centre off northern Chile. Mar Biol Res 10(8):791–798CrossRefGoogle Scholar
  151. Richardson AJ, Bakun A, Hays GC et al (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322PubMedCrossRefGoogle Scholar
  152. Ricklefs RE (1979) Ecology. Chiron Press Inc., New YorkGoogle Scholar
  153. Rodriguez CS, Marques AC, Mianzan HW et al (2017) Environment and life cycles influence distribution patterns of hydromedusae from austral South America. Mar Biol Res 13(6):659–670CrossRefGoogle Scholar
  154. Rossetto AL, Silveira FL, Morandini AC et al (2015) Seabather's eruption: report of fourteen cases. An Acad Brasil Ciênc 8:431–436CrossRefGoogle Scholar
  155. Saito N, Kurata Y, Moku M (2002) Note on a meso–bathypelagic isopodean genus Anuropus (Crustacea: Isopoda: Anuropidae) collected in the western North Pacific off northern Honshu, Japan. Bull Plankton Soc Japan 49:88–94. (in Japanese with English abstract)Google Scholar
  156. Sal Moyano MP, Schiariti A, Giberto DA et al (2012) The symbiotic relationship between Lychnorhiza lucerna (Scyphozoa, Rhizostomeae) and Libinia spinosa (Decapoda, Epialtidae) in the Río de la Plata (Argentina–Uruguay). Mar Biol 159:1933–1941CrossRefGoogle Scholar
  157. Santos LA, Feres SJC, Lopes ATL (2008) Primeiro registro da associação entre o caranguejo Libinia ferreirae (Crustacea; Decapoda; Majidae) e a medusa Lychnorhiza lucerna(Cnidaria; Scyphozoa; Rhizostomeae) para o Golfão Maranhense. Bol Lab Hidrobiol 21(1):99–102Google Scholar
  158. Schiariti A (2008) Historia de vida y dinámica de poblaciones de Lychnorhiza lucerna (Scyphozoa) ¿Un recurso pesquero alternativo? PhD thesis. Universidad de Buenos Aires, Buenos Aires, p 209Google Scholar
  159. Schiariti A, Mianzan HW (2013) La medusa Lychnorhiza lucerna (Cnidaria: Scyphozoa) como recurso pesquero alternativo en Argentina. Informe de Investigación N° 36 INIDEP. Dirección: Pesquerías Pelágicas y Ambiente Marino. Proyecto: Ecología Pesquera, Argentina, p 9Google Scholar
  160. Schiariti A, Kawahara M, Uye S–I et al (2008) Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Mar Biol 156:1–12CrossRefGoogle Scholar
  161. Schiariti A, Sal Moyano MP, Giberto DA et al (2012) First record of the association between Lychnorhiza lucerna (Scyphozoa, Rhizostomeae) and Cyrtograpsus affinis (Decapoda, Varunidae). Lat Am J Aquat Res 40(4):1090–1093CrossRefGoogle Scholar
  162. Schiariti A, Gaitán E, Mianzan HW (2013) Cartilla de identificación y protocolo básico de muestreo para el monitoreo de medusas del Mar Argentino. Informe de Asesoría y Transferencia N°37 INIDEP. Dirección: Pesquerías Pelágicas y Ambiente Marino; Programa: Ambiente Marino y Ecosistemas Pesqueros, p 7Google Scholar
  163. Schiariti A, Morandini AC, Jarms G et al (2014) Asexual reproduction strategies and blooming potential in Scyphozoa. Mar Ecol Prog Ser 510:241–253CrossRefGoogle Scholar
  164. Schiariti A, Melica V, Kogovšek T et al (2015) Density–dependent effects control the reproductive strategy and population growth of Aurelia aurita s.l. scyphistomae. Mar Biol 162(8):1665–1672CrossRefGoogle Scholar
  165. Schroeder R, Branco JO, Freitas Jr F et al (2014) Preliminary assessment of the jellyfish bycatch captured off southern and southeastern Brazil. Lat Am J Aquat Res 42:289–300CrossRefGoogle Scholar
  166. Shamah D (2014) Israeli tech turns jellyfish into paper towels. Times of Israel, edition of April 8, JerusalemGoogle Scholar
  167. Sinclair M (1988) Marine populations: an assay on population regulation and speciation. Washington Sea Grant Program, SeattleGoogle Scholar
  168. Sobolewski M, Rebuli KB, Haddad MA et al (2017) Ocorrência da associação entre Phyllorhiza puntacta Von Lendenfeld, 1884 (Cnidaria: Scyphozoa) e peixes na Baía de Paranaguá, Estado do Paraná. Arq Ciên Mar 37(1–2):29–34Google Scholar
  169. Spaulding JG (1972) The life cycle of Peachia quinquecapitata, an anemone parasitic on medusae during its larval development. Biol Bull 143:440–453CrossRefGoogle Scholar
  170. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford, p 250Google Scholar
  171. Suchman CL, Daly EA, Keister JE et al (2008) Feeding patterns and predation potential of scyphomedusae in a highly productive upwelling region. Mar Ecol Prog Ser 358:161–172CrossRefGoogle Scholar
  172. Sullivan LJ, Kremer P (2011) Gelatinous zooplankton and their trophic roles. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science. Elsevier, New York, pp 127–171CrossRefGoogle Scholar
  173. Schiariti A, Dutto MS, Pereyra DY, Failla Siquier G, Genzano GN (in press) Scyphozoa and Cubozoa from southwestern Atlantic and Subantarctic region (32-60°S; 34-70°W): species composition, spatial distribution and life history traits. Latin American Journal of Aquatic ResearchGoogle Scholar
  174. Technau U, Genikhovich G, Kraus JEM (2015) Cnidaria. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 1: introduction, Non–Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha. Springer, Vienna, pp 115–163CrossRefGoogle Scholar
  175. Thiebot J–B, Arnould J, Gómez Laich A et al (2017) Jellyfish and other gelata as food for four penguin species–insights from predator–borne videos. Front Ecol Environ 15(8):437–441CrossRefGoogle Scholar
  176. Toshino S, Miyake H, Ohtsuka S et al (2015) Monodisc strobilation in Japanese giant box jellyfishMorbakka virulenta (Kishinouye, 1910): a strong implication of phylogenetic similarity between Cubozoa and Scyphozoa. Evol Dev 17:231–239PubMedCrossRefGoogle Scholar
  177. Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236CrossRefGoogle Scholar
  178. Uye S–i (2008) Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plankon Benthos Res 3:125–131CrossRefGoogle Scholar
  179. Uye S, Shimauchi H (2005) Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan. J Plankton Res 27(3):237–248CrossRefGoogle Scholar
  180. Vandendriessche S, Vansteenbrugge L, Hostens K et al (2013) Jellyfish, jellypress and jellyperception. ILVO Mededeling 142:21Google Scholar
  181. Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293CrossRefGoogle Scholar
  182. Wakabayashi K, Sato R, Ishii H et al (2012) Culture of phyllosomas of Ibacus novemdentatus in a closed recirculating system using jellyfish as food. Aquaculture 330:162–166CrossRefGoogle Scholar
  183. West EJ, Welsh DT, Pitt KA (2009) Influence of decomposing jellyfish on the sedimentoxygen demand and nutrient dynamics. Hydrobiologia 616:151–160CrossRefGoogle Scholar
  184. Yilmaz IN (2014) Collapse of zooplankton stocks during Liriope tetraphylla (Hydromedusa) blooms and dense mucilaginous aggregations in a thermohaline stratified basin. Mar Ecol 36(3):595–610CrossRefGoogle Scholar
  185. Zamponi MO (1985) La alimentación de algunas especies de Hydromedusae. Neotropica 31(86):155–162Google Scholar
  186. Zamponi MO, Mianzan H (1985) La mecánica de captura y alimentación de Olindias sambaquiensis Müller, 1961 (Limnomedusae) en el medio natural y en condiciones experimentales. Hist Nat 5:269–278Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Agustín Schiariti
    • 1
    • 2
  • María S. Dutto
    • 3
  • André Carrara Morandini
    • 4
  • Renato M. Nagata
    • 5
  • Daiana Y. Pereyra
    • 1
  • Francisco A. Puente Tapia
    • 6
  • Luciana Díaz Briz
    • 6
  • Gabriel Genzano
    • 6
  1. 1.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICETUniversidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Instituto Argentino de Oceanografía (IADO), Centro Científico Tecnológico Bahía Blanca, CONICET – UNSBahía BlancaArgentina
  4. 4.Departamento de Zoologia, Instituto de BiociênciasUniversidade de São Paulo (USP)São PauloBrazil
  5. 5.Instituto de Oceanografia Universidade Federal do Rio Grande (FURG) Rio GrandeRio GrandeBrazil
  6. 6.Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina

Personalised recommendations