Advertisement

Satellite-Measured Phytoplankton and Environmental Factors in North Patagonian Gulfs

  • Gabriela N. Williams
  • Miriam E. Solís
  • José L. Esteves
Chapter

Abstract

An extensive series of high-resolution satellite images from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS, 2000–2006) was used in the characterization of the phytoplankton biomass seasonal cycle of the north Patagonian gulfs (NPG). The NPG system is formed by the San Matías, San José, and Nuevo gulfs (between 40°47′and 43°00′S and 63°00′ and 65°1.2′W) and is an area of ecological importance and of great significance for marine conservation in the Patagonian Argentinean Shelf. The spatio temporal variability of phytoplankton biomass in each of these environments was characterized by chlorophyll a data from satellite images (Chla-sat). The observed seasonal variability was explained by factors influencing the growth of phytoplankton: photosynthetically available radiation (PAR from the SeaWiFS sensor) and sea surface temperature (SST from the Advanced Very High-Resolution Radiometer, AVHRR). In situ temperature, nutrient, and chlorophyll a concentration data from oceanographic cruises carried out in Nuevo (four cruises: 1982–1983), San José (four cruises: 1984–1985), and San Matías (four cruises: 1986–1994) gulfs were also used to explain the observed patterns. Cycles of phytoplankton and SST over the NPG are typical of temperate waters. However, Chla-sat cycles were different among gulfs. At the same time, Chla-sat cycles over the gulfs were different from that over the adjacent middle continental shelf. SMG was characterized by a bimodal cycle, although in winter mean values were higher than the mean concentration for the whole area. SJG was characterized by a unimodal cycle with relatively high values of chlorophyll a concentration in spring-summer. NG showed a bimodal cycle with maximum values in autumn and spring and minimum values in winter and summer. Particularities of each gulf are discussed in relation to the seasonal hydrographic characteristics of the water column (temperature and nutrients) and in the context of the Patagonian shelf ecosystem.

Keywords

Chlorophyll a Nutrients Remote sensing Vertical profiles North Patagonian gulfs 

Notes

Acknowledgments

We dedicate this chapter to Dr. Domingo Antonio Gagliardini who was a pioneer in the field of marine remote sensing in Argentina. The authors thank the Comisión Nacional de Actividades Espaciales (CONAE, Argentina) for the provided images and the Ocean Biology Processing Group (Code 614.2) at the GSFC, Greenbelt, MD20 771, for the distribution of the ocean color data. We also thank M. Sapoznik, N. Pérez de la Torre, and M.R. Marin for their assistance in processing the satellite images and N. Glembocki for language improvement. An anonymous reviewer helped to improve the manuscript. The work was supported by funding from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina) through projects PICT 2003 N° 15221, 2006 N° 1575, 2006 N° 649, and 2013 N°0687.

References

  1. Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J Mar Syst 44:83–105CrossRefGoogle Scholar
  2. Amoroso RO, Gagliardini DA (2010) Inferring complex hydrographic processes using remote-sensed images: turbulent fluxes in the Patagonian gulfs and implications for scallop metapopulation dynamics. J Coast Res 262:320–332.  https://doi.org/10.2112/08–1095.1 CrossRefGoogle Scholar
  3. Amoroso RO, Parma AM, Orensanz JM, Gagliardini DA (2011) Zooming the macroscope: medium-resolution remote sensing as a framework for the assessment of a small-scale fishery. ICES J Mar Sci 68:696–706.  https://doi.org/10.1093/icesjms/fsq162 CrossRefGoogle Scholar
  4. Argüelles MB, Fazio A, Fiorito C et al (2016) Diving behavior of southern right whales (Eubalaena australis) in a maritime traffic area in Patagonia, Argentina. Aquat Mamm 42:104–108.  https://doi.org/10.1578/AM.42.1.2016.104 CrossRefGoogle Scholar
  5. Carreto JI, Verona CA, Casal A, Laborde MA (1974) Fitoplancton, pigmentos y condiciones ecológicas del Golfo San Matías: Marzo 1971 (I), Mayo 1971 (II) y Noviembre de 197I (III). Anal Inf Com Inv Cient La Plata, Argentina, pp 1–76Google Scholar
  6. Carreto JI, Benavides HR, Negri RM et al (1986) Toxic red-tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. J Plankton Res 8:15–28CrossRefGoogle Scholar
  7. Carreto JI, Montoya NG, Carignan MO et al (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front – degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21.  https://doi.org/10.1016/j.pocean.2016.05.002 CrossRefGoogle Scholar
  8. Chalcobsky BA, Crespo EA, Coscarella MA (2017) Whale-watching in Patagonia: what regulation scheme should be implemented when the socio-ecological system is changing? Mar Policy 75:165–173.  https://doi.org/10.1016/j.marpol.2016.11.010 CrossRefGoogle Scholar
  9. Charpy LJ, Charpy-Roubaud CJ (1980a) La production primaire des eaux du golfe San José (Peninsula Valdés, Argentina): populations phytoplanctoniques et composition du seston. Hydrobiologia 75:215–224CrossRefGoogle Scholar
  10. Charpy LJ, Charpy-Roubaud CJ (1980b) La production primaire des eaux du golfe San José (Peninsula Valdés, Argentina): estimation de la production phytoplanctonique annuelle. Hydrobiologia 75:225–229CrossRefGoogle Scholar
  11. Charpy-Roubaud CJ, Charpy LJ, Maestrini SY (1982) Fertilité des eaux cotières nord-patagoniques: facteurs limitant la production du phytoplancton e potentialités d’exploitation mytilicole. Oceanol Acta 2(5):188–197Google Scholar
  12. Charpy-Roubaud CJ, Charpy LJ, Maestrini SY (1983) Nutrient enrichments of waters of “Golfo de San José” (Argentina, 42°S), growth and species selection of phytoplankton. Mar Ecol 4(1):1–18CrossRefGoogle Scholar
  13. Dogliotti AI, Schloss IR, Almandoz GO, Gagliardini DA (2009) Evaluation of SeaWiFS and MODIS chlorophyll a products in the Argentinean Patagonian Continental Shelf (38°S–55°S). Int J Remote Sens 30:251–273.  https://doi.org/10.1080/01431160802311133 CrossRefGoogle Scholar
  14. Espinosa-Carreon L, Beier E., Ocampo Torres F. et al (2004) Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California. J Geophys Res 109:1–20. https://doi.org/10.1029/2003JC002105
  15. Esteves JL, Santinelli N, Sastre V, Díaz R, Rivas O (1992) A toxic dinoflagellate bloom and PSP production associated with upwelling in Golfo Nuevo, Patagonia, Argentina. Hydrobiologia 242:115–222CrossRefGoogle Scholar
  16. Esteves JL, Solís ME, Sastre V, Santinelli N, Gil M et al (1996) Evaluación de la contaminación urbana de la Bahía de San Antonio. Informes técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica. Fundación Patagonia Natural, Puerto MadrynGoogle Scholar
  17. Gagliardini DA, Rivas AL (2004) Environmental characteristics of San Matías Gulf obtained from Landsat-TM and ETM+ Data. Gayana (Concepción) 68:1–10.  https://doi.org/10.4067/S0717-65382004000200034 CrossRefGoogle Scholar
  18. Gagliardini DA, Amoroso RO, Dell’ Arciprete OP, Yorio P, Orensanz JM (2004) Detection of small-scale coastal oceanographic processes through Landsat-TM/ETM+ images: implications for the study of biological processes along the Patagonian Coasts of Argentina. Gayana (Concepción) 68:194–200.  https://doi.org/10.4067/S0717-65382004000200035 CrossRefGoogle Scholar
  19. Garcia V, Garcia C, Mata M et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep Sea Res Part I Oceanogr Res Pap 55:1150–1166.  https://doi.org/10.1016/j.dsr.2008.04.011 CrossRefGoogle Scholar
  20. Glorioso PD, Flather RA (1997) The Patagonian Shelf tides. Prog Oceanogr 40:263–283.  https://doi.org/10.1016/S0079-6611(98)00004-4 CrossRefGoogle Scholar
  21. Hoffmeyer MS (1994) Seasonal succession of Copepoda in the Bahía Blanca estuary. Hydrobiologia 292(293):303–308CrossRefGoogle Scholar
  22. IOCCG (2008) Why ocean colour? The societal benefits of ocean-colour technology. In Platt T, Hoepffner N, Stuart V, Brown C (eds) Reports of the International Ocean-Colour Coordinating Group, No. 7, IOCCG, Dartmouth, CanadaGoogle Scholar
  23. Kelly KA (1985) Separating clouds from ocean in infrared images. Remote Sens Environ 17:67–83CrossRefGoogle Scholar
  24. Krepper C, Bianchi AA (1982) Balance calórico del Mar Epicontinental Argentino. Acta Oceanogr Arg 3(1):119–133Google Scholar
  25. Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195.  https://doi.org/10.1093/plankt/fbp117 CrossRefGoogle Scholar
  26. Mann KH, Lazier JR (2006) Dynamics of marine ecosystems. Biological-physical interactions in the oceans, 3rd edn. Blackwell Science Publications, Cambridge, MAGoogle Scholar
  27. McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperature. J Geophys Res 90:11587–11601CrossRefGoogle Scholar
  28. Ocampo Reinaldo M, González R, Williams G et al (2013) Spatial patterns of the Argentine hake Merluccius hubbsi and oceanographic processes in a semi-enclosed Patagonian ecosystem. Mar Biol Res 9:394–406.  https://doi.org/10.1080/17451000.2012.739700 CrossRefGoogle Scholar
  29. O’Reilly JEO, Maritorena S, Siegel DA et al (2000) Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: version 4. SeaWiFS Postlaunch Technical Report Series Volume 11. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. S. B. Hooker and E. R. FirestoneGoogle Scholar
  30. Orensanz JM, Parma AM, Turk T, Valero J (2006) Dynamics, assessment and management of exploited natural populations. In: Shumway S, Parsons GJ (eds) Scallops: biology, ecology and aquaculture, 2nd edn. Elsevier, Amsterdam, pp 765–868CrossRefGoogle Scholar
  31. Palma ED, Matano RP, Piola AR (2004) A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. J Geophys Res 109:C08014.  https://doi.org/10.1029/2004JC002315 CrossRefGoogle Scholar
  32. Piola AR, Scasso L (1988) Circulación en el golfo San Matías. Geoacta 15:33–51Google Scholar
  33. Pisoni JP, Rivas AL, Piola AR (2014) Satellite remote sensing reveals coastal upwelling events in the San Matías Gulf? Northern Patagonia. Remote Sens Environ 152:270–278.  https://doi.org/10.1016/j.rse.2014.06.019 CrossRefGoogle Scholar
  34. Pisoni JP, Rivas AL, Piola AR (2015) On the variability of tidal fronts on a macrotidal continental shelf, Northern Patagonia, Argentina. Deep Res Part II Top Stud Oceanogr 119:61–68.  https://doi.org/10.1016/j.dsr2.2014.01.019 CrossRefGoogle Scholar
  35. Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244.  https://doi.org/10.1016/j.csr.2007.08.001 CrossRefGoogle Scholar
  36. Ramírez FC (1996) Composición, abundancia y variación estacional del zooplancton de red del Golfo San Matías. Frente Marítimo (Sec A) 16:157–167Google Scholar
  37. Rivas AL (1990) Análisis estacional de la estructura termohalina en el Golfo San José, Argentina. Geoacta 17(1):37–48Google Scholar
  38. Rivas AL (2010) Spatial and temporal variability of satellite-derived sea surface temperature in the southwestern Atlantic Ocean. Cont Shelf Res 30:752–760CrossRefGoogle Scholar
  39. Rivas A, Beier E (1990) Temperature and salinity fields in the Northpatagonic Gulfs. Oceanol Acta 13:15–20Google Scholar
  40. Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. J Mar Syst 79:134–143.  https://doi.org/10.1016/j.jmarsys.2009.07.008 CrossRefGoogle Scholar
  41. Rivas A, Ripa P (1989) Variación estacional de la estructura termohalina de Golfo Nuevo, Argentina. Geofis Int 28:3–24Google Scholar
  42. Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Cont Shelf Res 26:703–720.  https://doi.org/10.1016/j.csr.2006.01.013 CrossRefGoogle Scholar
  43. Romero SI, Piola AR, Charo M, Garcia CAE (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res C05021. doi: https://doi.org/10.1029/2005JC003244
  44. Romero MA, Reinaldo MO, Williams G et al (2013) Understanding the dynamics of an enclosed trawl demersal fishery in Patagonia (Argentina): a holistic approach combining multiple data sources. Fish Res 140:73–82.  https://doi.org/10.1016/j.fishres.2012.12.002 CrossRefGoogle Scholar
  45. Sabatini M, Martos P (2002) Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Sci Mar 66:215–232CrossRefGoogle Scholar
  46. Santinelli NH (2008) Fitoplancton de un ambiente costero sometido a perturbación antrópica: Bahía Nueva, Provincia de Chubut. Tesis Doctoral, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, ArgentinaGoogle Scholar
  47. Sastre AV, Santinelli NH, Esteves JL, Ferrario ME (2001) Aspectos ecológicos de especies de Pseudo-nitzschia en aguas costeras patagónicas (Argentina). In: Alveal K, Antezana T (eds) Sustentabilidad de la biodiversidad. Universidad de Concepción, Concepción, pp 217–235Google Scholar
  48. Scasso ML, Piola AR (1988) Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Geoacta 15(1):13–31Google Scholar
  49. Servicio de Hidrografía Naval (2017). Salida y puesta del sol http://www.hidro.gov.ar. Accessed 22 Jun 2017
  50. Solís ME (1998) Monitoring in Nuevo Gulf (Argentina): Analysis of oceanographic data by geographic information systems (GIS). M. Sc. Thesis D.E.W. 021. Unesco-IHE Delft. The NetherlandsGoogle Scholar
  51. Strickland JDH, Parsons TR (1972) A practical handbook of the seawater analysis. 2nd edn. Bull J Fish Res Bd Can 167: 311 pp.Google Scholar
  52. Svendsen GM, Romero MA, Williams GN et al (2015) Environmental niche overlap between common and dusky dolphins in North Patagonia, Argentina. PLoS One 10:1–20.  https://doi.org/10.1371/journal.pone.0126182 CrossRefGoogle Scholar
  53. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Perm Int Exp Mer 18:287–295CrossRefGoogle Scholar
  54. Tonini MH, Palma ED (2017) Tidal dynamics on the North Patagonian Argentinean Gulfs. Estuar Coast Shelf Sci 189:115–130.  https://doi.org/10.1016/j.ecss.2017.02.026 CrossRefGoogle Scholar
  55. Tonini MH, Palma ED, Piola AR (2013) A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Cont Shelf Res 65:97–110.  https://doi.org/10.1016/j.csr.2013.06.011 CrossRefGoogle Scholar
  56. Williams GN (2011) Caracterización ambiental del golfo San Matías mediante sensores remotos y parámetros océanográficos. Relación con la distribución y abundancia de los recursosbiológicos de interés pesquero. Tesis Doctoral, Universidad Nacional del Comahue, San Carlos de Bariloche, ArgentinaGoogle Scholar
  57. Williams GN, Dogliotti AI, Zaidman P et al (2013) Assessment of remotely-sensed sea-surface temperature and chlorophyll-a concentration in San Matías Gulf (Patagonia, Argentina). Cont Shelf Res 52:159–171.  https://doi.org/10.1016/j.csr.2012.08.014 CrossRefGoogle Scholar
  58. Wilson C, Sastre AV, Hoffmeyer MS et al (2016) Southern right whale (Eubalaena australis) calf mortality at Península Valdés, Argentina: are harmful algal blooms to blame? Mar Mamm Sci 32:423–451.  https://doi.org/10.1111/mms.12263 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gabriela N. Williams
    • 1
  • Miriam E. Solís
    • 1
  • José L. Esteves
    • 1
  1. 1.Laboratorio de Oceanografía Química y Contaminación de Aguas (LOQyCA)Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina

Personalised recommendations