Advertisement

Flagellates Versus Diatoms: Phytoplankton Trends in Tropical and Subtropical Estuarine-Coastal Ecosystems

  • Clarisse Odebrecht
  • Maria C. Villac
  • Paulo C. Abreu
  • Lumi Haraguchi
  • Piter D. F. Gomes
  • Denise Rivera Tenenbaum
Chapter

Abstract

Attempts to provide general patterns of phytoplankton and their regulating factors benefit from ecosystem comparisons, but these are strongly biased toward high-latitude environments of the northern hemisphere (> 20°N). In the present study, we compare the phytoplankton biomass and composition variability in two coastal environments in the southern hemisphere, the tropical Guanabara Bay, GB (23°S), and the subtropical Patos Lagoon Estuary, PLE (32°S), located on the South American southeast coast at the state of Rio de Janeiro and Rio Grande do Sul, respectively. These environments present contrasting features regarding the magnitude of anthropic impacts, the watershed size, geomorphology, and hydrology. Our goal was to identify the main factors that regulate the phytoplankton biomass and composition comparing data obtained at monthly intervals between the years 2011 and 2012 at a single station located in an area of significant water exchange in each environment. Surface water temperature, salinity, inorganic dissolved nutrients, chlorophyll a, phytoplankton biomass (carbon) and composition were analyzed. Phytoplankton biomass in the GB and PLE was dominated, respectively, by flagellates and diatoms, whereas cyanobacteria were more important in the former. Salinity was about twofold higher in the GB (mean 32.6 ± 1.5) than PLE (mean 15.4 ± 9.1) and, together with nutrient concentrations and their proportions, largely explained the observed different communities and much higher biomass in GB. GB presented strong eutrophication signals, with high ammonium and phosphate and lower, closer to limitation, silicate concentration. In contrast, high silicate concentration favored the predominance of diatoms in the PLE. Despite large environmental differences between both environments, the chlorophyll a presented a rather similar seasonal pattern, with maxima in austral summer/autumn and spring in both ecosystems. We suggest the seasonal pattern was associated to the incident light variation, but this hypothesis should be further explored.

Keywords

Diatoms Flagellates Dinoflagellates Cyanobacteria Eutrophication Brazil 

Notes

Acknowledgments

This study was funded by the Brazilian National Biodiversity Research Program (SISBIOTA-PELD Zonas Costeiras: CNPQ Proc. 563263/2015-5), the Brazilian Long Term Ecological Program (PELD CNPq Proc. 403809/2012-6, Proc. 403805/2012-0), and the research foundations of the states of Rio de Janeiro (FAPERJ Proc. E-26/110.114/2013) and Rio Grande do Sul (FAPERGS Proc. 12/3122-7). We would like to thank Ricardo Pollery for nutrient analysis (Laboratório de Biogeoquímica, UFRJ) and Márcio Tenório for chlorophyll analysis (Laboratório de Fitoplancton, UFRJ).

References

  1. Abreu PC, Bergesch M, Proença LA et al (2010) Short- and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon Estuary, Southern Brazil. Estuar Coasts 33:554–569CrossRefGoogle Scholar
  2. Abreu PC, Marangoni J, Odebrecht C (2016) So close, so far: differences in long-term chlorophyll a variability in three nearby estuarine-coastal stations. Mar Biol Res 13:1–13.  https://doi.org/10.1080/17451000.2016.1189081 Google Scholar
  3. Alvares CA, Stape JL, Sentelhas PC (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728CrossRefGoogle Scholar
  4. Aminot A, Chaussepied M (1983) Manuel des analyses chimiques en milieu marin. Centre National pour l’Exploitation des Oceans, BrestGoogle Scholar
  5. ANTARES (2003). Latin American network for the study of long term changes in coastal ecosystems. http://antares.ws. Accessed 10 Oct 2017
  6. Borcard D, Gillet F, Legendre P (2011) Canonical ordination. In: Numerical ecology with R. Springer, New York, pp 153–225CrossRefGoogle Scholar
  7. Carpenter EJ, Subramaniam A, Capone DG (2005) Corrigendum to “biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic Ocean”. Deep Sea Res Part 1 Oceanogr Res Pap 52:1787–1788CrossRefGoogle Scholar
  8. Carreira RS, Wagener ALR, Readman JW et al (2002) Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Mar Chem 79:207–227CrossRefGoogle Scholar
  9. Carstensen J, Klais R, Cloern JE (2015) Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar Coast Shelf Sci 162:98–109CrossRefGoogle Scholar
  10. Cloern JE, Jassby AD (2010) Patterns and scales of phytoplankton variability in estuarine-coastal ecosystems. Estuar Coasts 33:230–241CrossRefGoogle Scholar
  11. Cloern JE, Foster SK, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11:2477–2501CrossRefGoogle Scholar
  12. Cloern JE, Abreu PC, Carstensen J et al (2016) Human activities and climate variability drive fast-paced change across the world’s estuarine–coastal ecosystems. Glob Chang Biol 22(2):513–529.  https://doi.org/10.1111/gcb.13059 CrossRefPubMedGoogle Scholar
  13. Coelho-Souza SA, López MS, Guimarães JRD et al (2012) Biophysical interactions in the Cabo Frio upwelling system, Southeastern Brazil. Braz J Oceanogr 60(3):353–365.  https://doi.org/10.1590/S1679-87592012000300008 CrossRefGoogle Scholar
  14. Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser 83:281–289CrossRefGoogle Scholar
  15. Fernandes EHL, Dyer KR, Möller Jr OO et al (2002) The Patos Lagoon hydrodynamics during an El Niño event (1998). Cont Shelf Res 22:1699–1713CrossRefGoogle Scholar
  16. Fujita CC, Odebrecht C (2007) Short term variability of chlorophyll a and phytoplankton composition in a shallow area of the Patos Lagoon Estuary (Southern Brazil). Atlântica 29(2):93–106Google Scholar
  17. Guinder VA, Molinero JC (2013) Climate changes effects on marine phytoplankton. In: Arias HA, Menendez AM (eds) Marine ecology in a changing world. CRC Press Taylor & Francis Group, Boca Raton, pp 68–90CrossRefGoogle Scholar
  18. Guinder VA, Popovich CA, Molinero JC et al (2010) Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina. Mar Biol 157:2703–2716CrossRefGoogle Scholar
  19. Haraguchi L, Carstensen J, Abreu PC et al (2015) Long-term changes of the phytoplankton community and biomass in the subtropical shallow Patos Lagoon Estuary, Brazil. Estuar Coast Shelf Sci 162:76–87CrossRefGoogle Scholar
  20. Hasle G (1978) Using the inverted microscope. In: Sournia A (ed) Phytoplankton manual, Monographs on oceanographic methodology, vol 6. UNESCO, Paris, pp 191–196Google Scholar
  21. Hillebrand H, Dürselen CD, Pollingher U et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  22. INMET (2017) Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/
  23. Islabão CA, Odebrecht C (2015) Influence of salinity on the growth of Akashiwo sanguinea and Prorocentrum micans (Dinophyta) under acclimated conditions and osmotic stress. Mar Biol Res 11:965–973CrossRefGoogle Scholar
  24. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  25. Kirst GO (1989) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 40:21–53Google Scholar
  26. Kjerfve B, Ribeiro CHA, Dias GMT et al (1997) Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil. Cont Shelf Res 17(13):1609–1643CrossRefGoogle Scholar
  27. Kjerfve B, Lacerda LD, Dias GMT (2001) Baía de Guanabara, Rio de Janeiro, Brazil. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America, Ecological studies, vol 144. Springer, Berlin, pp 107–117CrossRefGoogle Scholar
  28. Klais R, Tamminen T, Kremp A et al (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PlosOne 6(6):e21567CrossRefGoogle Scholar
  29. Knoppers BA, Kjerfve B (1999) Coastal lagoons of Southeastern Brazil: physical and biogeochemical characteristics. In: Perillo G, Piccolo C, Pino-Quivira M (eds) Estuaries of South America. Springer, Berlin, pp 35–66CrossRefGoogle Scholar
  30. Margalef R (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509Google Scholar
  31. Marques WC (2012) The temporal variability of the freshwater discharge and water levels at the Patos Lagoon, Brazil. Int J Geosci 3:758–766.  https://doi.org/10.4236/ijg.2012.34076 CrossRefGoogle Scholar
  32. Mayr LM, Tenenbaum D, Villac MC et al (1989) Hydrobiological characterization of Guanabara Bay. In: Magoon O, Neves C (eds) Coastlines of Brazil. American Society of Civil Engineers, New York, pp 124–139Google Scholar
  33. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579.  https://doi.org/10.4319/lo.2000.45.3.0569 CrossRefGoogle Scholar
  34. METEOBLUE (2006) Previsões meteorológicas. https://www.meteoblue.com/pt/historyplus. Accessed 2 June 2017
  35. Möller OO Jr, Paim PS, Loares ID (1991) Facteurs et mecanismes de la circulation des eaux dans l’estuaire de la lagune dos Patos. Bull lInst Geol Bass Aquitaine 49:15–21Google Scholar
  36. Möller O, Lorenzetti JA, Stech J et al (1996) The Patos Lagoon summertime circulation and dynamics. Cont Shelf Res 16(3):335–351CrossRefGoogle Scholar
  37. Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46(8):2008–2018CrossRefGoogle Scholar
  38. Neveux J, Lantoine F (1993) Spectrofluorometric assay of chlorophylls and pheopigments using the least squares approximation technique. Deep Sea Res Part 1 Oceanogr Res Pap 40(9):1747–1765.  https://doi.org/10.1016/0967-0637(93)90030-7 CrossRefGoogle Scholar
  39. Niencheski JF, Baumgarten MG, Fillmann G et al (1999) Nutrients and suspended matter behavior in the Patos Lagoon Estuary (Brazil). In: Perillo GME, Piccolo MC, Pino-Quivira M (eds) Estuaries of South America. Springer, Heidelberg, pp 67–81CrossRefGoogle Scholar
  40. Niencheski LF, Windom HL, Moore WS et al (2007) Submarine groundwater discharge of nutrients to the ocean along a coastal lagoon barrier, Southern Brazil. Mar Chem 106:546–561CrossRefGoogle Scholar
  41. Odebrecht C, Abreu PC, Möller OO et al (2005) Drought effects on pelagic properties in the shallow and turbid Patos Lagoon, Brazil. Estuaries 28(5):675–685CrossRefGoogle Scholar
  42. Odebrecht C, Bergesch M, Rörig LR et al (2010) Phytoplankton interannual variability at Cassino Beach, Southern Brazil (1992–2007), with emphasis on the surf zone diatom Asterionellopsis glacialis. Estuar Coasts 33:570–583CrossRefGoogle Scholar
  43. Officer CB, Ryther JH (1980) The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser 3:83–91CrossRefGoogle Scholar
  44. Oksanen J, Blanchet FG, Friendly M et al. (2017) vegan: Community Ecology PackageGoogle Scholar
  45. Olenina I, Hajdu S, Edler L et al (2010) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106:144Google Scholar
  46. PELD (1999) Programa de Pesquisa Ecológica de Longa Duração. http://cnpq.br/apresentacao-peld/. Accessed 10 Oct 2017
  47. Piola A, Möller OO, Guerrero R et al (2008) Variability of the subtropical shelf front off eastern South America: winter 2003 and summer 2004. Cont Shelf Res 28:1639–1648CrossRefGoogle Scholar
  48. R Core Team (2017) R: A language and environment for statistical computingGoogle Scholar
  49. Sevrin-Reyssac J, Machado MCS, Schutze MLM et al (1979) Biomasse et production du phytoplancton de la baie de Guanabara (État de Rio de Janeiro, Brésil) et du secteur océanique adjacent. Variations de mai à juillet 1978. Bul Mus Natn Hist Nat 4:329–354Google Scholar
  50. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 29–40Google Scholar
  51. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. J Fish Res Board Can, OttawaGoogle Scholar
  52. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25(11):1331–1346.  https://doi.org/10.1093/plankt/fbg096 CrossRefGoogle Scholar
  53. Tenório MMB, Duarte R, Barrera-Alba JJ et al (2010) Plankton structure of shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (WAP): chlorophyll biomass and size-fractionated chlorophyll during austral summer 2009/2010. INCT–APA 1:115–120CrossRefGoogle Scholar
  54. Torgan LC, Tundisi JG, Niencheski LF (2002) Seasonal variation of planktonic diatoms in Patos Lagoon, Southern Brazil. In: John J (ed) Proceedings of 15th diatom symposium. Gantner Verlag, Lichtenstein, p 459470Google Scholar
  55. UNESCO (1983) Chemical methods for use in marine environmental monitoring. Manual and Guides 12. IOC, ParisGoogle Scholar
  56. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Limnol 9:1–38Google Scholar
  57. Valentin JL (2001) The Cabo Frio upwelling system. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of Latin America, Ecological studies, vol 144. Springer, Berlin, pp 97–105CrossRefGoogle Scholar
  58. Villac MC, Mayr LM, Tenenbaum DR et al. (1991) Sampling strategies proposed to monitor Guanabara Bay, RJ, Brazil. In: Coastal zone 1991, Los Angeles, pp 1168–1182Google Scholar
  59. Villac MC, Tenenbaum DR (2010) The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neotropica 10(2):271–293CrossRefGoogle Scholar
  60. Wang Z, Guo X, Qu L et al (2017) Effects of nitrogen and phosphorus on the growth of Levanderina fissa: how it blooms in Pearl River Estuary. J Ocean Univ China 16(1):114–120CrossRefGoogle Scholar
  61. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Clarisse Odebrecht
    • 1
  • Maria C. Villac
    • 2
    • 3
  • Paulo C. Abreu
    • 1
  • Lumi Haraguchi
    • 1
    • 4
  • Piter D. F. Gomes
    • 2
  • Denise Rivera Tenenbaum
    • 2
  1. 1.Instituto de OceanografiaUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Instituto de BiologiaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  3. 3.Fish and Wildlife Research InstituteSt. PetersburgUSA
  4. 4.Institute of BioscienceAarhus UniversityRoskildeDenmark

Personalised recommendations