Long and Short QT Syndromes

  • Lia CrottiEmail author
  • Maria-Christina Kotta
  • Silvia Castelletti
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


The long and short QT syndromes are genetically transmitted arrhythmogenic diseases characterized by an abnormal QTc on the basal ECG and by an increased risk of life-threatening arrhythmias. While in the long QT syndrome well-established diagnostic criteria are available as well as effective treatments, in the short QT syndrome, much less is known in terms of diagnosis, risk stratification and pharmacological treatment. In this chapter we discuss for each syndrome current knowledge on their genetic basis, clinical presentation, diagnosis, risk stratification and therapy. Furthermore, multisystem disorders associated with a prolongation of the QT, such as the Jervell and Lange-Nielsen syndrome, the Timothy syndrome, the ankyrin-B syndrome and the Andersen-Tawil syndrome, are described. Finally, specific subtypes of the long QT syndrome, characterized by high malignancy and frequent failure of available therapies, such as calmodulin-related LQTS and the triadin knockout syndrome, are also reviewed.


Compliance with Ethical Standards

Conflict of Interest

LC declares that she has no conflict of interest. MCK declares that she has no conflict of interest. SC declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.


  1. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97(2):175–87.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011;13(8):1077–109. Erratum in: Europace. 2012 Feb;14(2):277.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Altmann HM, Tester DJ, Will ML, et al. Homozygous/compound heterozygous triadin mutations associated with autosomal-recessive long-QT syndrome and pediatric sudden cardiac arrest: elucidation of the triadin knockout syndrome. Circulation. 2015;131(23):2051–60.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Amin AS, Giudicessi JR, Tijsen AJ, et al. Variants in the 3’ untranslated region of the KCNQ1-encoded Kv7.1 potassium channel modify disease severity in patients with type 1 long QT syndrome in an allele-specific manner. Eur Heart J. 2012;33(6):714–23.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971;60(5):559–64.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anttonen O, Junttila MJ, Rissanen H, et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007;116(7):714–20.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arking DE, Pfeufer A, Post W, et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006;38(6):644–51.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Arking DE, Pulit SL, Crotti L, et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014;46(8):826–36.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation. 2007;115(3):361–7.PubMedCrossRefGoogle Scholar
  11. Attwell D, Lee JA. A cellular basis for the primary long Q-T syndromes. Lancet. 1988;1(8595):1136–9.PubMedCrossRefGoogle Scholar
  12. Bai CX, Kurokawa J, Tamagawa M, et al. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112(12):1701–10.PubMedCrossRefGoogle Scholar
  13. Barc J, Briec F, Schmitt S, et al. Screening for copy number variation in genes associated with the long QT syndrome: clinical relevance. J Am Coll Cardiol. 2011;57(1):40–7.PubMedCrossRefGoogle Scholar
  14. Barhanin J, Lesage F, Guillemare E, et al. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384(6604):78–80.PubMedCrossRefGoogle Scholar
  15. Bazett HC. An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol. 1997;2(2):177–94.CrossRefGoogle Scholar
  16. Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.PubMedCrossRefGoogle Scholar
  17. Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376(6542):683–5.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Berthet M, Denjoy I, Donger C, et al. C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Circulation. 1999;99(11):1464–70.PubMedCrossRefGoogle Scholar
  19. Bianchi L, Shen Z, Dennis AT, et al. Cellular dysfunction of LQT5-minK mutants: abnormalities of IKs, IKr and trafficking in long QT syndrome. Hum Mol Genet. 1999;8(8):1499–507.PubMedCrossRefGoogle Scholar
  20. Bianchi L, Priori SG, Napolitano C, et al. Mechanisms of I(Ks) suppression in LQT1 mutants. Am J Physiol Heart Circ Physiol. 2000;279(6):H3003–11.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Boczek NJ, Best JM, Tester DJ, et al. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome. Circ Cardiovasc Genet. 2013;6(3):279–89.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Boczek NJ, Gomez-Hurtado N, Ye D, et al. Spectrum and prevalence of CALM1-, CALM2-, and CALM3-encoded calmodulin variants in long QT syndrome and functional characterization of a novel long QT syndrome-associated calmodulin missense variant, E141G. Circ Cardiovasc Genet. 2016;9(2):136–46.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Brink PA, Crotti L, Corfield V, et al. Phenotypic variability and unusual clinical severity of congenital long QT syndrome in a founder population. Circulation. 2005;112:2602–10.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Buber J, Mathew J, Moss AJ, et al. Risk of recurrent cardiac events after onset of menopause in women with congenital long-QT syndrome types 1 and 2. Circulation. 2011;123(24):2784–91.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Canűn S, Pérez N, Beirana LG. Andersen syndrome autosomal dominant in three generations. Am J Med Genet. 1999;85(2):147–56.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Carnethon MR, Anthony MS, Cascio WE, et al. A prospective evaluation of the risk of QT prolongation with hormone replacement therapy: the atherosclerosis risk in communities study. Ann Epidemiol. 2003;13(7):530–6.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chen L, Marquardt ML, Tester DJ, et al. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA. 2007;104(52):20990–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Chockalingam P, Crotti L, Girardengo G, et al. Not all beta-blockers are equal in the management of long QT syndrome types 1 and 2. J Am Coll Cardiol. 2012;60(20):2092–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Choi G, Kopplin LJ, Tester DJ, et al. Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 2004;110(15):2119–24.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chopra N, Knollmann BC. Triadin regulates cardiac muscle couplon structure and microdomain Ca(2+) signalling: a path towards ventricular arrhythmias. Cardiovasc Res. 2013;98(2):187–91.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chopra N, Yang T, Asghari P, et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci U S A. 2009;106(18):7636–41.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chouabe C, Neyroud N, Guicheney P, et al. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 1997;116(17):5472–9.CrossRefGoogle Scholar
  34. Collura CA, Johnson JN, Moir C, et al. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6(6):752–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Conrath CE, Opthof T. Ventricular repolarization: an overview of (patho)physiology, sympathetic effects and genetic aspects. Prog Biophys Mol Biol. 2006;92(3):269–307.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Crotti L, Lundquist AL, Insolia R, et al. KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation. 2005;112(9):1251–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Crotti L, Spazzolini C, Schwartz PJ, et al. The common long-QT syndrome mutation KCNQ1/A341V causes unusually severe clinical manifestations in patients with different ethnic backgrounds: toward a mutation-specific risk stratification. Circulation. 2007;116(21):2366–75.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Crotti L, Celano G, Dagradi F, et al. Congenital long QT syndrome. Orphanet J Rare Dis. 2008;3:18.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Crotti L, Lewandowska MA, Schwartz PJ, et al. A KCNH2 branch point mutation causing aberrant splicing contributes to an explanation of genotype-negative long QT syndrome. Heart Rhythm. 2009a;6(2):212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Crotti L, Monti MC, Insolia R, et al. NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009b;120(17):1657–63.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Crotti L, Spazzolini C, Porretta AP, et al. Vagal reflexes following an exercise stress test: a simple clinical tool for gene-specific risk stratification in the long QT syndrome. J Am Coll Cardiol. 2012;60:2515–224.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Crotti L, Johnson CN, Graf E, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013a;127(9):1009–17.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Crotti L, Tester DJ, White WM, et al. Long QT syndrome-associated mutations in intrauterine fetal death. JAMA. 2013b;309(14):1473–82.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Crotti L, Dossena C, Spazzolini C, et al. LQTS diagnosis in genotype-negative athletes with a long QT interval. A different clinical entity? Eur Heart J. 2016a;37(Abstract Suppl):207.Google Scholar
  45. Crotti L, Lahtinen AM, Spazzolini C, et al. Genetic modifiers for the long-QT syndrome: how important is the role of variants in the 3’ untranslated region of KCNQ1? Circ Cardiovasc Genet. 2016b;9(4):330–9.PubMedPubMedCentralGoogle Scholar
  46. Crotti L, Spazzolini C, Boczek NJ, et al. International Calmodulinopathy Registry (ICaMR). Circulation. 2016c;134:A14840.Google Scholar
  47. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Dahimène S, Alcoléa S, Naud P, et al. The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res. 2006;99(10):1076–83.PubMedCrossRefPubMedCentralGoogle Scholar
  49. De Ferrari GM, Schwartz PJ. Long QT syndrome, a purely electrical disease? Not anymore. Eur Heart J. 2009;30(3):253–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. De Ferrari GM, Schwartz PJ. Vox clamantis in deserto. We spoke but nobody was listening: echocardiography can help risk stratification of the long-QT syndrome. Eur Heart J. 2015;36(3):148–50.PubMedCrossRefPubMedCentralGoogle Scholar
  51. De Ferrari GM, Nador F, Beria G, et al. Effect of calcium channel block on the wall motion abnormality of the idiopathic long QT syndrome. Circulation. 1994;89(5):2126–32.PubMedCrossRefPubMedCentralGoogle Scholar
  52. de Villiers CP, van der Merwe L, Crotti L, et al. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. Circ Cardiovasc Genet. 2014;7(5):599–606.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Delannoy E, Sacher F, Maury P, et al. Cardiac characteristics and long-term outcome in Andersen-Tawil syndrome patients related to KCNJ2 mutation. Europace. 2013;15(12):1805–11.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Delisle BP, Anson BD, Rajamani S, et al. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94(11):1418–28.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Dhutia H, Malhotra A, Parpia S, et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med. 2016;50(2):124–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Donaldson MR, Jensen JL, Tristani-Firouzi M, et al. PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome. Neurology. 2003;60(11):1811–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Donger C, Denjoy I, Berthet M, et al. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997;96(9):2778–81.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Drici MD, Burklow TR, Haridasse V, et al. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation. 1996;94(6):1471–4.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Duchatelet S, Crotti L, Peat RA, et al. Identification of a KCNQ1 polymorphism acting as a protective modifier against arrhythmic risk in long-QT syndrome. Circ Cardiovasc Genet. 2013;6(4):354–61.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Dumaine R, Wang Q, Keating MT, et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res. 1996;78:916–24.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Earle N, Yeo Han D, Pilbrow A, et al. Single nucleotide polymorphisms in arrhythmia genes modify the risk of cardiac events and sudden death in long QT syndrome. Heart Rhythm. 2014;11(1):76–82.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Eddy CA, MacCormick JM, Chung SK, et al. Identification of large gene deletions and duplications in KCNQ1 and KCNH2 in patients with long QT syndrome. Heart Rhythm. 2008;5(9):1275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Etheridge SP, Sanatani S, Cohen MI, et al. Long QT syndrome in children in the era of implantable defibrillators. J Am Coll Cardiol. 2007;50(14):1335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Etheridge SP, Bowles NE, Arrington CB, et al. Somatic mosaicism contributes to phenotypic variation in Timothy syndrome. Am J Med Genet A. 2011;155A(10):2578–83.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gaita F, Giustetto C, Bianchi F, et al. Short QT Syndrome: a familial cause of sudden death. Circulation. 2003;108(8):965–70.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Gallagher MM, Magliano G, Yap YG, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol. 2006;98(7):933–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. George AL Jr. Calmodulinopathy: a genetic trilogy. Heart Rhythm. 2015;12(2):423–4.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Gillis J, Burashnikov E, Antzelevitch C, et al. Long QT, syndactyly, joint contractures, stroke and novel CACNA1C mutation: expanding the spectrum of Timothy syndrome. Am J Med Genet A. 2012;158A(1):182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Giustetto C, Schimpf R, Mazzanti A, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Giustetto C, Scrocco C, Schimpf R, et al. Usefulness of exercise test in the diagnosis of short QT syndrome. Europace. 2015;17(4):628–34.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Goldenberg I, Horr S, Moss AJ, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57(7):802–12.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2(2):185–94.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94(2):99–102.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Haitin Y, Attali B. The C-terminus of Kv7 channels: a multifunctional module. J Physiol. 2008;586(7):1803–10.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Harmer SC, Tinker A. The role of abnormal trafficking of KCNE1 in long QT syndrome 5. Biochem Soc Trans. 2007;35(Pt 5):1074–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Haugaa KH, Edvardsen T, Leren TP, et al. Left ventricular mechanical dispersion by tissue Doppler imaging: a novel approach for identifying high-risk individuals with long QT syndrome. Eur Heart J. 2009;30(3):330–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hayashi K, Konno T, Fujino N, et al. Impact of updated diagnostic criteria for long QT syndrome on clinical detection of diseased patients. JACC Clin Electrophysiol. 2016;2(3):279–87.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Heradien MJ, Goosen A, Crotti L, et al. Does pregnancy increase cardiac risk for LQT1 patients with the KCNQ1-A341V mutation? J Am Coll Cardiol. 2006;48:1410–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Hong K, Bjerregaard P, Gussak I, et al. Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol. 2005;16(4):394–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hoorntje T, Alders M, van Tintelen P, et al. Homozygous premature truncation of the HERG protein: the human HERG knockout. Circulation. 1999;100(12):1264–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Horner JM, Horner MM, Ackerman MJ. The diagnostic utility of recovery phase QTc during treadmill exercise stress testing in the evaluation of long QT syndrome. Heart Rhythm. 2011;8(11):1698–704.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Itoh H, Crotti L, Aiba T, et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37(18):1456–64.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Jervell A, Lange-Nielsen F. Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval, and sudden death. Am Heart J. 1957;54(1):59–68.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Johnson JN, Ackerman MJ. Competitive sports participation in athletes with congenital long QT syndrome. JAMA. 2012;308(8):764–5.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Johnson WH Jr, Yang P, Yang T, et al. Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr Res. 2003;53(5):744–8.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kääb S, Pfeufer A, Hinterseer M, et al. Long QT syndrome. Why does sex matter? Z Kardiol. 2004;93(9):641–5.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kadish AH, Greenland P, Limacher MC, et al. Estrogen and progestin use and the QT interval in postmenopausal women. Ann Noninvasive Electrocardiol. 2004;9(4):366–74.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104(4):569–80.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Kim J, Ghosh S, Liu H, et al. Calmodulin mediates Ca2+ sensitivity of sodium channels. J Biol Chem. 2004;279:45004–12.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kirilmaz A, Ulusoy RE, Kardesoglu E, et al. Short QT interval syndrome: a case report. J Electrocardiol. 2005;38(4):371–4.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Klein R, Ganelin R, Marks JF, et al. Periodic paralysis with cardiac arrhythmia. J Pediatr. 1963;62(3):371–85.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Kolder IC, Tanck MW, Postema PG, et al. Analysis for genetic modifiers of disease severity in patients with long-QT syndrome type 2. Circ Cardiovasc Genet. 2015;8(3):447–56.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Koopmann TT, Alders M, Jongbloed RJ, et al. Long QT syndrome caused by a large duplication in the KCNH2 (HERG) gene undetectable by current polymerase chain reaction-based exon-scanning methodologies. Heart Rhythm. 2006;3(1):52–5.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kurokawa J, Chen L, Kass RS. Requirement of subunit expression for cAMP mediated regulation of a heart potassium channel. Proc Natl Acad Sci U S A. 2003;100(4):2122–7.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Landstrom AP, Boczek NJ, Ye D, et al. Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. Int J Cardiol. 2016;220:290–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Larsen LA, Fosdal I, Andersen PS, et al. Recessive Romano-Ward syndrome associated with compound heterozygosity for two mutations in the KVLQT1 gene. Eur J Hum Genet. 1999;7(6):724–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Le Scouarnec S, Bhasin N, Vieyres C, et al. Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A. 2008;105(40):15617–22.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lee MP, Ravenel JD, Hu RJ, et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106(12):1447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Leinonen JT, Crotti L, Djupsjöbacka A, et al. The genetics underlying idiopathic ventricular fibrillation: A special role for catecholaminergic polymorphic ventricular tachycardia? Int J Cardiol. 2018;250:139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Liu X-K, Katchman A, Whitfield BH, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovasc Res. 2003;57(1):28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lo-A-Njoe SM, Wilde AA, van Erven L, et al. Syndactyly and long QT syndrome (CaV1.2 missense mutation G406R) is associated with hypertrophic cardiomyopathy. Heart Rhythm. 2005;2(12):1365–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Locati EH, Pancaldi A, Pala M, et al. Exercise-induced electrocardiographic changes in patients with the long QT syndrome. Circulation. 1988;78(Suppl II):42.Google Scholar
  105. Lu LX, Zhou W, Zhang X, et al. Short QT syndrome: a case report and review of literature. Resuscitation. 2006;71(1):115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lupoglazoff JM, Cheav T, Baroudi G, et al. Homozygous SCN5A mutation in long-QT syndrome with functional two-to-one atrioventricular block. Circ Res. 2001;89(2):E16–21.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Makita N, Behr E, Shimizu W, et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest. 2008;118(6):2219–29.PubMedPubMedCentralGoogle Scholar
  108. Makita N, Yagihara N, Crotti L, et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet. 2014;7(4):466–74.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Malfatto G, Beria G, Sala S, et al. Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome. J Am Coll Cardiol. 1994;23(2):296–301.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol. 1995a;76(10):744–5.PubMedCrossRefGoogle Scholar
  111. Marks ML, Whisler SL, Clericuzio C, et al. A new form of long QT syndrome associated with syndactyly. J Am Coll Cardiol. 1995b;25(1):59–64.PubMedCrossRefGoogle Scholar
  112. Marsman RF, Barc J, Beekman L, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. J Am Coll Cardiol. 2014;63(3):259–66.PubMedCrossRefGoogle Scholar
  113. Marx SO, Kurokawa J, Reiken S, et al. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295(5554):496–9.PubMedCrossRefGoogle Scholar
  114. Mazzanti A, Kanthan A, Monteforte N, et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol. 2014;63(13):1300–8.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116(2):134–42.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Merri M, Benhorin J, Alberti M, et al. Electrocardiographic quantitation of ventricular repolarization. Circulation. 1989;80(5):1301–8.PubMedCrossRefGoogle Scholar
  117. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.PubMedCrossRefGoogle Scholar
  118. Mohler PJ, Splawski I, Napolitano C, et al. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci U S A. 2004;101(24):9137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mohler PJ, Le Scouarnec S, Denjoy I, et al. Defining the cellular phenotype of ‘ankyrin-B syndrome’ variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation. 2007;115(4):432–41.PubMedCrossRefGoogle Scholar
  120. Moss AJ, McDonald J. Unilateral cervicothoracic sympathetic ganglionectomy for the treatment of long QT interval syndrome. N Engl J Med. 1971;285(16):903–4.PubMedCrossRefGoogle Scholar
  121. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: a prospective international study. Circulation. 1985;71(1):17–21.PubMedCrossRefGoogle Scholar
  122. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation. 1991;84(3):1136–44.PubMedCrossRefGoogle Scholar
  123. Moss AJ, Robinson JL, Gessman L, et al. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol. 1999;84(8):876–9.PubMedCrossRefGoogle Scholar
  124. Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of blocker therapy in congenital long-QT syndrome. Circulation. 2000;101(6):616–23.PubMedCrossRefGoogle Scholar
  125. Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-gogo-related gene potassium channel. Circulation. 2002;105(7):794–9.PubMedCrossRefGoogle Scholar
  126. Moss AJ, Shimizu W, Wilde AA, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Moss AJ, Zareba W, Schwarz KQ, et al. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19(12):1289–93.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Nador F, Beria G, De Ferrari GM, et al. Unsuspected echocardiographic abnormality in the long QT syndrome. Diagnostic, prognostic, and pathogenetic implications. Circulation. 1991;84(4):1530–42.PubMedCrossRefGoogle Scholar
  129. Nagaoka I, Shimizu W, Itoh H, et al. Mutation site dependent variability of cardiac events in Japanese LQT2 form of congenital long-QT syndrome. Circ J. 2008;72(5):694–9.PubMedCrossRefGoogle Scholar
  130. Napolitano C, Antzelevitch C. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel. Circ Res. 2011;108(5):607–18.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Napolitano C, Splawski I, Timothy KW, et al. Timothy syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. Seattle, WA: University of Washington. Seattle; 1993-2018; 2006 Feb 15 [Updated 2015 Jul 16].Google Scholar
  132. Napolitano C, Schwartz PJ, Brown AM, et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol. 2000;11(6):691–6.PubMedCrossRefGoogle Scholar
  133. Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294(23):2975–80.PubMedCrossRefGoogle Scholar
  134. Newton-Cheh C, Larson MG, Corey DC, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: The Framingham Heart Study. Heart Rhythm. 2005;2(3):277–84.PubMedCrossRefGoogle Scholar
  135. Newton-Cheh C, Eijgelsheim M, Rice KM, et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet. 2009;41(4):399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Neyroud N, Tesson F, Denjoy I, et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet. 1997;15(2):186–9.PubMedCrossRefGoogle Scholar
  137. Nguyen HL, Pieper GH, Wilders R. Andersen–Tawil syndrome: clinical and molecular aspects. Int J Cardiol. 2013;170(1):1–16.PubMedCrossRefGoogle Scholar
  138. Nof E, Cordeiro JM, Pérez GJ, et al. A common single nucleotide polymorphism can exacerbate long-QT type 2 syndrome leading to sudden infant death. Circ Cardiovasc Genet. 2010;3(2):199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Nyegaard M, Overgaard MT, Søndergaard MT, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91(4):703–12.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Odero A, Bozzani A, De Ferrari GM, et al. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias: the surgical supraclavicular approach to cervicothoracic sympathectomy. Heart Rhythm. 2010;7(8):1161–5.PubMedCrossRefGoogle Scholar
  141. Pellizzón OA, Kalaizich L, Ptácek LJ, et al. Flecainide suppresses bidirectional ventricular tachycardia and reverses tachycardia-induced cardiomyopathy in Andersen-Tawil syndrome. J Cardiovasc Electrophysiol. 2008;19(1):95–7.PubMedGoogle Scholar
  142. Pfeufer A, Sanna S, Arking DE, et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet. 2009;41(4):407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Piippo K, Laitinen P, Swan H, et al. Homozygosity for a HERG potassium channel mutation causes a severe form of long QT syndrome: identification of an apparent founder mutation in the Finns. J Am Coll Cardiol. 2000;35(7):1919–25.PubMedCrossRefGoogle Scholar
  144. Pipilas DC, Johnson CN, Webster G, et al. Novel calmodulin mutations associated with congenital long QT syndrome affect calcium current in human cardiomyocytes. Heart Rhythm. 2016;13(10):2012–9.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105(4):511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–33.PubMedCrossRefGoogle Scholar
  147. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348(19):1866–74.PubMedCrossRefGoogle Scholar
  148. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292(11):1341–4.PubMedCrossRefGoogle Scholar
  149. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–7.PubMedCrossRefGoogle Scholar
  150. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Heart Rhythm. 2013;10(12):1932–63.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Priori SG, Blomström-Lundqvist C, Mazzanti A, et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793–867.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Quaglini S, Rognoni C, Spazzolini C, et al. Cost-effectiveness of neonatal ECG screening for the long QT syndrome. Eur Heart J. 2006;27(15):1824–32.PubMedCrossRefGoogle Scholar
  153. Rashba EJ, Zareba W, Moss AJ, et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. Circulation. 1998;97(5):451–6.PubMedCrossRefGoogle Scholar
  154. Reed GJ, Boczek NJ, Etheridge SP, et al. CALM3 mutation associated with long QT syndrome. Heart Rhythm. 2015;12(2):419–22.PubMedCrossRefGoogle Scholar
  155. Reichenbach H, Meister EM, Theile H. The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax. 1992;60(2):54–6.PubMedGoogle Scholar
  156. Rocchetti M, Sala L, Dreizehnter L, et al. Elucidating the arrhythmogenic mechanism of long QT syndrome caused by the CALM1-F142L mutation using patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res. 2017;113(5):531–41.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Romano C, Gemme G, Pongiglione R. Rare cardiac arrhythmias of the pediatric age. ii. Syncopal attacks due to paroxysmal ventricular fibrillation (presentation of 1st case in italian pediatric literature). Clin Pediatr. 1963;45:656–83.Google Scholar
  158. Ruan Y, Liu N, Bloise R, et al. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44.PubMedCrossRefGoogle Scholar
  159. Saito T, Ciobotaru A, Bopassa JC, et al. Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res. 2009;105(4):343–52.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sanguinetti MC, Curran ME, Spector PS, et al. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci U S A. 1996a;93(5):2208–12.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996b;384(6604):80–3.PubMedCrossRefGoogle Scholar
  162. Sansone V, Tawil R. Management and treatment of Andersen-Tawil syndrome (ATS). Neurotherapeutics. 2007;4(2):233–7.PubMedCrossRefGoogle Scholar
  163. Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42(3):305–12.PubMedCrossRefGoogle Scholar
  164. Saul JP, Schwartz PJ, Ackerman MJ, et al. Rationale and objectives for ECG screening in infancy. Heart Rhythm. 2014;11(12):2316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Schimpf R, Wolpert C, Bianchi F, et al. Congenital short QT syndrome and implantable cardioverter defibrillator treatment: inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol. 2003;14(12):1273–7.PubMedCrossRefGoogle Scholar
  166. Schimpf R, Wolpert C, Gaita F, et al. Short QT syndrome. Cardiovasc Res. 2005;67(3):357–66.PubMedCrossRefGoogle Scholar
  167. Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17(3):267–8.PubMedCrossRefGoogle Scholar
  168. Schwartz PJ. The idiopathic long QT syndrome: the need for a prospective registry. Eur Heart J. 1983;4(8):529–31.PubMedCrossRefGoogle Scholar
  169. Schwartz PJ. Idiopathic long QT syndrome: progress and questions. Am Heart J. 1985;109(2):399–411.PubMedCrossRefGoogle Scholar
  170. Schwartz PJ. Prevention of the arrhythmias in the long QT syndrome. In: Kulbertus HE, editor. Medical management of cardiac arrhythmias. Edinburgh: Churchill Livingstone; 1986. p. 153–61.Google Scholar
  171. Schwartz PJ. Stillbirths, sudden infant deaths, and long-QT syndrome: puzzle or mosaic, the pieces of the Jigsaw are being fitted together. Circulation. 2004;109(24):2930–2.PubMedCrossRefGoogle Scholar
  172. Schwartz PJ. Sudden cardiac death, founder populations, and mushrooms: what is the link with gold mines and modifier genes? Heart Rhythm. 2011;8(4):548–50.PubMedCrossRefGoogle Scholar
  173. Schwartz PJ. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat Rev Cardiol. 2014;11(6):346–53.PubMedCrossRefGoogle Scholar
  174. Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34(40):3109–16.PubMedCrossRefGoogle Scholar
  175. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181–4.PubMedCrossRefPubMedCentralGoogle Scholar
  176. Schwartz PJ, Crotti L. Long QT and short QT syndromes. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 7th ed. Philadelphia: Elsevier/Saunders; 2017. p. 893–904. ISBN: 9780323447331.Google Scholar
  177. Schwartz PJ, Malliani A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q-T syndrome. Am Heart J. 1975;89(1):45–50.PubMedCrossRefPubMedCentralGoogle Scholar
  178. Schwartz PJ, Moss AJ. Prolonged QT interval: what does it mean? J Cardiovasc Med. 1982;7:1317.Google Scholar
  179. Schwartz PJ, Periti M, Malliani A. The long Q-T syndrome. Am Heart J. 1975;89(3):378–90.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Schwartz PJ, Zaza A, Locati E, et al. Stress and sudden death. The case of the long QT syndrome. Circulation. 1991;83(4 Suppl II):71–80.Google Scholar
  181. Schwartz PJ, Moss AJ, Vincent GM, et al. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88(2):782–4.PubMedCrossRefPubMedCentralGoogle Scholar
  182. Schwartz PJ, Priori SG, Locati EH, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate: implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103(1):89–95.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Schwartz PJ, Garson A, Paul T, et al. Guidelines for the interpretation of the neonatal electrocardiogram. A task force of the European Society of Cardiology. Eur Heart J. 2002;23(17):1329–44.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Schwartz PJ, Priori SG, Cerrone M, et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long-QT syndrome. Circulation. 2004;109(15):1826–33.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Schwartz PJ, Spazzolini C, Crotti L, et al. The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 2006;113(6):783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Schwartz PJ, Vanoli E, Crotti L, et al. Neural control of heart rate is an arrhythmia risk modifier in long QT syndrome. J Am Coll Cardiol. 2008;51(9):920–9.PubMedCrossRefPubMedCentralGoogle Scholar
  188. Schwartz PJ, Spazzolini C, Crotti L. All LQT3 patients need an ICD: true or false? Heart Rhythm. 2009a;6:113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  189. Schwartz PJ, Stramba-Badiale M, Crotti L, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009b;120(18):1761–7.PubMedCrossRefPubMedCentralGoogle Scholar
  190. Schwartz PJ, Spazzolini C, Priori SG, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them? Data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010;122(13):1272–82.PubMedCrossRefPubMedCentralGoogle Scholar
  191. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–77.PubMedCrossRefPubMedCentralGoogle Scholar
  192. Seth R, Moss AJ, McNitt S, et al. Long QT syndrome and pregnancy. J Am Coll Cardiol. 2007;49(10):1092–8.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Shamgar L, Ma L, Schmitt N, et al. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ Res. 2006;98(8):1055–63.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Shimizu W, Tanabe Y, Aiba T, et al. Differential effects of beta-blockade on dispersion of repolarization in the absence and presence of sympathetic stimulation between the LQT1 and LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol. 2002;39(12):1984–91.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Spazzolini C, Mullally J, Moss AJ, et al. Clinical implications for patients with long QT syndrome who experience a cardiac event during infancy. J Am Coll Cardiol. 2009;54(9):832–7.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Splawski I, Timothy KW, Vincent GM, et al. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med. 1997a;336(22):1562–7.PubMedCrossRefPubMedCentralGoogle Scholar
  197. Splawski I, Tristani-Firouzi M, Lehmann MH, et al. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997b;17(3):338–40.PubMedCrossRefPubMedCentralGoogle Scholar
  198. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102(10):1178–85.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119(1):19–31.PubMedCrossRefPubMedCentralGoogle Scholar
  200. Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102(23):8089–96.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Stramba-Badiale M, Spagnolo D, Bosi G, et al. Are gender differences in QTc present at birth? MISNES investigators. Multicenter Italian study on neonatal electrocardiography and sudden infant death syndrome. Am J Cardiol. 1995;75(17):1277–8.PubMedCrossRefPubMedCentralGoogle Scholar
  202. Stuhmer W, Conti F, Suzuki H, et al. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989;339(6226):597–603.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Subbiah RN, Gula LJ, Skanes AC, et al. Andersen-Tawil syndrome: management challenges during pregnancy, labor, and delivery. J Cardiovasc Electrophysiol. 2008;19(9):987–9.PubMedCrossRefPubMedCentralGoogle Scholar
  204. Swan H, Viitasalo M, Piippo K, et al. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol. 1999;34(3):823–9.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Swayne LA, Murphy NP, Asuri S, et al. Novel variant in the ANK2 membrane-binding domain is associated with ankyrin-B syndrome and structural heart disease in a first nations population with a high rate of long QT syndrome. Circ Cardiovasc Genet. 2017;10(1):e001537.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Sy RW, van der Werf C, Chattha IS, et al. Derivation and validation of a simple exercise-based algorithm for prediction of genetic testing in relatives of LQTS probands. Circulation. 2011;124(20):2187–94.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Tawil R, Ptacek LJ, Pavlakis SG, et al. Andersen’s syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features: Andersen’s syndrome. Ann Neurol. 1994;35(3):326–30.PubMedCrossRefPubMedCentralGoogle Scholar
  208. ter Bekke RMA, Haugaa KH, van den Wijngaard A, et al. Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk. Eur Heart J. 2015;36(3):179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm. 2005;2(5):507–17.PubMedCrossRefPubMedCentralGoogle Scholar
  210. Tester DJ, Will ML, Haglund CM, et al. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47(4):764–8.PubMedCrossRefGoogle Scholar
  211. Tomás M, Napolitano C, De Giuli L, et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol. 2010;55(24):2745–52.PubMedCrossRefGoogle Scholar
  212. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110(3):381–8.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Tülümen E, Giustetto C, Wolpert C, et al. PQ segment depression in patients with short QT syndrome: a novel marker for diagnosing short QT syndrome? Heart Rhythm. 2014;11(6):1024–30.PubMedCrossRefPubMedCentralGoogle Scholar
  214. Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci U S A. 2008;105(27):9355–60.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114(20):2104–12.PubMedCrossRefGoogle Scholar
  216. Venance SL, Cannon SC, Fialho D, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain J Neurol. 2006;129(Pt 1):8–17.CrossRefGoogle Scholar
  217. Vetter DE, Mann JR, Wangemann P, et al. Inner ear defects induced by null mutation of the isk gene. Neuron. 1996;17(6):1251–64.PubMedCrossRefPubMedCentralGoogle Scholar
  218. Vincent GM, Abildskov JA, Burgess MJ. MJ Q-T interval syndromes. Prog Cardiovasc Dis. 1974;16(6):523–30.PubMedCrossRefPubMedCentralGoogle Scholar
  219. Vincent GM, Jaiswal D, Timothy KW. Effects of exercise on heart rate, QT, QTc and QT/QS2 in the Romano-Ward inherited long QT syndrome. Am J Cardiol. 1991;68(5):498–503.PubMedCrossRefPubMedCentralGoogle Scholar
  220. Vincent GM, Schwartz PJ, Denjoy I, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of beta-blocker treatment ‘failures’. Circulation. 2009;119:215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  221. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80(5):805–11.PubMedCrossRefPubMedCentralGoogle Scholar
  222. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996a;12(1):17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  223. Wang DW, Yazawa K, George AL Jr, et al. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A. 1996b;93(23):13200–5.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Ward OC. A new familial cardiac syndrome in children. J Ir Med Assoc. 1964;54:103–6.PubMedPubMedCentralGoogle Scholar
  225. Watanabe H, Makiyama T, Koyama T, et al. High prevalence of early repolarization in short QT syndrome. Heart Rhythm. 2010;7(5):647–52.PubMedCrossRefPubMedCentralGoogle Scholar
  226. Westenskow P, Splawski I, Timothy KW, et al. Compound mutations: a common cause of severe long-QT syndrome. Circulation. 2004;109(15):1834–41.PubMedCrossRefPubMedCentralGoogle Scholar
  227. Wilde AA, Moss AJ, Kaufman ES, et al. Clinical aspects of type 3 long-QT syndrome: an international multicenter study. Circulation. 2016;134(12):872–82.PubMedCrossRefPubMedCentralGoogle Scholar
  228. Wolpert C, Schimpf R, Giustetto C, et al. Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005;16(1):54–8.PubMedCrossRefPubMedCentralGoogle Scholar
  229. Yang Y, Yang Y, Liang B, et al. Identification of a Kir3.4 mutation in congenital Long QT Syndrome. Am J Hum Genet. 2010;86:872–80.PubMedCrossRefPubMedCentralGoogle Scholar
  230. Yanowitz F, Preston JB, Abildskov JA. Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res. 1966;18(4):416–28.PubMedCrossRefGoogle Scholar
  231. Yin G, Hassan F, Haroun AR, et al. Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms. J Am Heart Assoc. 2014;3(3):e000996.PubMedCrossRefPubMedCentralGoogle Scholar
  232. Yoon G, Oberoi S, Tristani-Firouzi M, et al. Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am J Med Genet A. 2006;140A(4):312–21.CrossRefGoogle Scholar
  233. Zhang L, Vincent GM, Baralle M, et al. An intronic mutation causes long QT syndrome. J Am Coll Cardiol. 2004;44(6):1283–91.PubMedCrossRefGoogle Scholar
  234. Zhang L, Benson DW, Tristani-Firouzi M, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation. 2005;111(21):2720–6.PubMedCrossRefGoogle Scholar
  235. Zühlke RD, Pitt GS, Deisseroth K, et al. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399:159–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lia Crotti
    • 1
    • 2
    • 3
    Email author
  • Maria-Christina Kotta
    • 1
  • Silvia Castelletti
    • 1
  1. 1.IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular GeneticsMilanItaly
  2. 2.Department of Cardiovascular, Neural and Metabolic SciencesSan Luca Hospital, IRCCS Istituto Auxologico ItalianoMilanItaly
  3. 3.Department of Medicine and SurgeryUniversity of Milano-BicoccaMilanItaly

Personalised recommendations