Advertisement

Dysregulation of Ionic Homeostasis: Relevance for Cardiac Arrhythmias

  • Claire Hopton
  • Luigi Venetucci
  • Miriam Lettieri
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

The action potential is formed by the interaction of various sarcolemmal ionic currents. These currents are produced by the flow of ions which is driven by ionic electrochemical gradient across the sarcolemma and is mediated by ion channels. Alterations in ion channel function or trans-sarcolemmal ionic electrochemical gradients lead to alteration in ionic current and action potential which can cause arrhythmias. Extracellular and intracellular concentration of some ions can modulate the gating of ion channels. Therefore, the maintenance of the correct intra- and extracellular ionic concentrations and trans-sarcolemmal ionic gradients (ionic homeostasis) is essential for the electrical function of the heart. Alterations in ionic homeostasis can lead to profound alterations in cardiac electrophysiology and arrhythmias. In this chapter will review how dysregulation of ionic homeostasis can lead to arrhythmias with a particular emphasis on channelopathies.

Notes

Compliance with Ethical Standards

Funding

Claire Hopton is funded by a BHF Clinical Research Training Fellowship. Miriam Lettieri is funded by a BHF Studentship.

Conflict of Interest

Claire Hopton declares that she has no conflict of interest. Luigi Venetucci declares that he has no conflict of interest. Miriam Lettieri declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aronsen JM, Skogestad J, Lewalle A, et al. Hypokalaemia induces Ca(2+) overload and Ca(2+) waves in ventricular myocytes by reducing Na(+),K(+)-ATPase α2 activity. J Physiol. 2015;593(6):1509–21.CrossRefPubMedGoogle Scholar
  2. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.CrossRefGoogle Scholar
  3. Chen W, Wang R, Chen B, et al. The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias. Nat Med. 2014;20(2):184–92.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Curran J, Hinton MJ, Ríos E, et al. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res. 2007;100(3):391–8.CrossRefPubMedGoogle Scholar
  5. Diercks DB, Shumaik GM, Harrigan RA, et al. Electrocardiographic manifestations: electrolyte abnormalities. J Emerg Med. 2004;27(2):153–60.CrossRefPubMedGoogle Scholar
  6. Eisner D. Calcium in the heart: from physiology to disease. Exp Physiol. 2014;99(10):1273–82.CrossRefPubMedGoogle Scholar
  7. Eisner DA, Lederer WJ. Inotropic and arrhythmogenic effects of potassium-depleted solutions on mammalian cardiac muscle. J Physiol. 1979;294:255–77.CrossRefPubMedPubMedCentralGoogle Scholar
  8. El-Sherif N, Turitto G. Electrolyte disorders and arrhythmogenesis. Cardiol J. 2011;18(3):233–45.PubMedGoogle Scholar
  9. Endoh M. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance. Eur J Pharmacol. 2004;500(1-3):73–86.CrossRefPubMedGoogle Scholar
  10. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77:1528–39.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fredj S, Lindegger N, Sampson KJ, et al. Altered Na+ channels promote pause-induced spontaneous diastolic activity in long QT syndrome type 3 myocytes. Circ Res. 2006;99(11):1225–32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Grandi E, Pasqualini FS, Pes C, et al. Theoretical investigation of action potential duration dependence on extracellular Ca2+ in human cardiomyocytes. J Mol Cell Cardiol. 2009;46(3):332–42.CrossRefPubMedGoogle Scholar
  13. Györke S, Terentyev D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res. 2008;77(2):245–55.CrossRefPubMedGoogle Scholar
  14. Hancox JC, McPate MJ, El Harchi A, Zhang YH. The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol Ther. 2008;119:118–32.CrossRefPubMedGoogle Scholar
  15. Hussain M, Orchard CH. Sarcoplasmic reticulum Ca2+ content, L-type Ca2+ current and the Ca2+ transient in rat myocytes during β-adrenergic stimulation. J Physiol. 1997;505:385–402.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lindegger N, Hagen BM, Marks AR, et al. Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. J Mol Cell Cardiol. 2009;47(2):326–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Matsuoka S, Hilgemann DW. Steady-state and dynamic properties of cardiac sodium-calcium exchange. Ion and voltage dependencies of the transport cycle. J Gen Physiol. 1992;100(6):963–1001.CrossRefPubMedGoogle Scholar
  18. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. J Mol Cell Cardiol. 2006;41(5):782–4.CrossRefPubMedGoogle Scholar
  19. Pezhouman A, Singh N, Song Z. Molecular basis of hypokalemia-induced ventricular fibrillation. Circulation. 2015;132(16):1528–37.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Postema PG, Vlaar AP, DeVries JH, Tan HL. Familial Brugada syndrome uncovered by hyperkalaemic diabetic ketoacidosis. Europace. 2011;13(10):1509–10.CrossRefPubMedGoogle Scholar
  21. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.CrossRefPubMedGoogle Scholar
  22. Radwański PB, Brunello L, Veeraraghavan R, et al. Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release. Cardiovasc Res. 2015;106(1):143–52.CrossRefPubMedGoogle Scholar
  23. Radwański PB, Ho HT, Veeraraghavan R, et al. Neuronal Na+ channels are integral components of pro-arrhythmic Na+/Ca2+ signaling nanodomain that promotes cardiac arrhythmias during β-adrenergic stimulation. JACC Basic Transl Sci. 2016;1(4):251–66.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol. 2013;591(17):4099–116.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995;81(2):299–307.CrossRefPubMedGoogle Scholar
  26. Shattock MJ. Phospholemman: its role in normal cardiac physiology and potential as a druggable target in disease. Curr Opin Pharmacol. 2009;9(2):160–6.CrossRefPubMedGoogle Scholar
  27. Sikkel MB, Collins TP, Rowlands C, et al. Flecainide reduces Ca(2+) spark and wave frequency via inhibition of the sarcolemmal sodium current. Cardiovasc Res. 2013;98(2):286–96.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 1996;379:833–6.CrossRefPubMedGoogle Scholar
  29. Terentyev D, Rees CM, Li W, et al. Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit model of LQT2 syndrome. Circ Res. 2014;115(11):919–28.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Trafford AW, Díaz ME, Negretti N, Eisner DA. Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ Res. 1997;81(4):477–84.CrossRefPubMedGoogle Scholar
  31. Trafford AW, Díaz ME, Sibbring GC. Eisner DA Modulation of CICR has no maintained effect on systolic Ca2+: simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca2+ fluxes in rat ventricular myocytes. J Physiol. 2000;522(Pt 2):259–70.CrossRefPubMedPubMedCentralGoogle Scholar
  32. van der Werf C, Wilde AA. Catecholaminergic polymorphic ventricular tachycardia: from bench to bedside. Heart. 2013;99(7):497–504.CrossRefPubMedGoogle Scholar
  33. van der Werf C, Kannankeril PJ, Sacher F, et al. Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol. 2011;57(22):2244–54.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Venetucci LA, Trafford AW, Eisner DA. Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required. Circ Res. 2007;100(1):105–11.CrossRefPubMedGoogle Scholar
  35. Venetucci LA, Trafford AW, O’Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008;77(2):285–92.CrossRefPubMedGoogle Scholar
  36. Venetucci L, Denegri M, Napolitano C, Priori SG. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat Rev Cardiol. 2012;9(10):561–75.CrossRefPubMedGoogle Scholar
  37. Watanabe H, Chopra N, Laver D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med. 2009;15(4):380–3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang J, Zhou Q, Smith CD, et al. Non-β-blocking R-carvedilol enantiomer suppresses Ca2+ waves and stress-induced ventricular tachyarrhythmia without lowering heart rate or blood pressure. Biochem J. 2015;470(2):233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhou Q, Xiao J, Jiang D, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med. 2011;17(8):1003–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claire Hopton
    • 1
  • Luigi Venetucci
    • 2
  • Miriam Lettieri
    • 1
  1. 1.Division of Cardiovascular SciencesUniversity of ManchesterManchesterUK
  2. 2.Division of Cardiovascular SciencesUniversity of Manchester, Manchester Heart Centre, Manchester Foundation TrustManchesterUK

Personalised recommendations