Advertisement

HCN Channels and Cardiac Pacemaking

  • Annalisa Bucchi
  • Chiara Piantoni
  • Andrea Barbuti
  • Dario DiFrancesco
  • Mirko Baruscotti
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Cardiomyocytes located in the central part of the sinoatrial node are responsible for generating the electrical rhythm of the heart since they are endowed with the fastest automaticity of the entire conduction system. The source of this automaticity is the diastolic pacemaker phase which consists of the slow depolarization that links the end of each action potential with the beginning of the next, and the funny current (“If”) is the primary contributor of this phase. Each f-channel results from the assembly of four single subunits belonging to the family of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which includes four isoforms (HCN1–HCN4). The biophysical and modulatory properties of the f/HCN current will be presented together with some of the underlying molecular details which have been partly unraveled by the recent structural definition of the channel obtained by cryo-electron microscopy studies. The chapter will also provide an extensive review of the mutations of the HCN4 channels in humans associated with sinus arrhythmias and left ventricular noncompaction cardiomyopathy. Functional studies based on HCN transgenic and knockout mouse models confirm the importance of the If current in sustaining the pacemaker activity since its suppression affects the cardiac performance and autonomic modulation of heart rate. These studies also provide the evidence that cardiac HCN currents are required for proper cardiac development and embryo survival.

Finally, the clinical relevance of HCN channels as targets of drugs aimed to selectively reduce the heart rate will be also discussed.

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A. 2009;106(29):12189–94.  https://doi.org/10.1073/pnas.0810332106.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altomare C, Bucchi A, Camatini E, Baruscotti M, Viscomi C, Moroni A, DiFrancesco D. Integrated allosteric model of voltage gating of HCN channels. J Gen Physiol. 2001;117(6):519–32.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D. Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol. 2003;549(Pt 2):347–59.  https://doi.org/10.1113/jphysiol.2002.027698.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anumonwo JM, Delmar M, Jalife J. Electrophysiology of single heart cells from the rabbit tricuspid valve. J Physiol. 1990;425:145–67.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barbuti A, Robinson RB. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function. Pharmacol Rev. 2015;67:368–88.  https://doi.org/10.1124/pr.114.009597.CrossRefPubMedGoogle Scholar
  6. Barbuti A, Terragni B, Brioschi C, DiFrancesco D. Localization of f-channels to caveolae mediates specific beta2-adrenergic receptor modulation of rate in sinoatrial myocytes. J Mol Cell Cardiol. 2007;42(1):71–8.  https://doi.org/10.1016/j.yjmcc.2006.09.018.CrossRefPubMedGoogle Scholar
  7. Baruscotti M, Bucchi A, DiFrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther. 2005;107(1):59–79.  https://doi.org/10.1016/j.pharmthera.2005.01.005.CrossRefPubMedGoogle Scholar
  8. Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol. 2010;48(1):55–64.  https://doi.org/10.1016/j.yjmcc.2009.06.019.CrossRefPubMedGoogle Scholar
  9. Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G, Gnecchi-Rusconi T, Montano N, Casali KR, Micheloni S, Barbuti A, DiFrancesco D. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. Proc Natl Acad Sci U S A. 2011;108(4):1705–10.  https://doi.org/10.1073/pnas.1010122108.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baruscotti M, Bianco E, Bucchi A, DiFrancesco D. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If “funny” current. J Interv Card Electrophysiol. 2016;46(1):19–28.  https://doi.org/10.1007/s10840-015-0097-y.CrossRefPubMedGoogle Scholar
  11. Baruscotti M, Bucchi A, Milanesi R, Paina M, Barbuti A, Gnecchi-Ruscone T, Bianco E, Vitali-Serdoz L, Cappato R, DiFrancesco D. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial inappropriate sinus tachycardia. Eur Heart J. 2017;38(4):280–8.  https://doi.org/10.1093/eurheartj/ehv582.CrossRefPubMedGoogle Scholar
  12. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: from genes to function. Physiol Rev. 2009;89(3):847–85.  https://doi.org/10.1152/physrev.00029.2008.CrossRefPubMedGoogle Scholar
  13. Biel S, Aquila M, Hertel B, Berthold A, Neumann T, DiFrancesco D, Moroni A, Thiel G, Kauferstein S. Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Arch – Eur J Physiol. 2016;468(10):1663–71.  https://doi.org/10.1007/s00424-016-1870-1.CrossRefGoogle Scholar
  14. Bois P, Bescond J, Renaudon B, Lenfant J. Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol. 1996;118(4):1051–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boyett MR, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 2000;47(4):658–87.CrossRefPubMedGoogle Scholar
  16. Brioschi C, Micheloni S, Tellez JO, Pisoni G, Longhi R, Moroni P, Billeter R, Barbuti A, Dobrzynski H, Boyett MR, DiFrancesco D, Baruscotti M. Distribution of the pacemaker HCN4 channel mRNA and protein in the rabbit sinoatrial node. J Mol Cell Cardiol. 2009;47(2):221–7.  https://doi.org/10.1016/j.yjmcc.2009.04.009.CrossRefPubMedGoogle Scholar
  17. Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the heart? Nature. 1979;280(5719):235–6.CrossRefPubMedGoogle Scholar
  18. Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol. 2002;120(1):1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D. Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol. 2006;572(Pt 2):335–46.  https://doi.org/10.1113/jphysiol.2005.100776.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bucchi A, Baruscotti M, Robinson RB, DiFrancesco D. Modulation of rate by autonomic agonists in SAN cells involves changes in diastolic depolarization and the pacemaker current. J Mol Cell Cardiol. 2007;43(1):39–48.  https://doi.org/10.1016/j.yjmcc.2007.04.017.CrossRefPubMedGoogle Scholar
  21. Bucchi A, Baruscotti M, Nardini M, Barbuti A, Micheloni S, Bolognesi M, DiFrancesco D. Identification of the molecular site of ivabradine binding to HCN4 channels. PLoS One. 2013;8(1):e53132.  https://doi.org/10.1371/journal.pone.0053132.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cerbai E, Mugelli A. I(f) in non-pacemaker cells: role and pharmacological implications. Pharmacol Res. 2006;53(5):416–23.  https://doi.org/10.1016/j.phrs.2006.03.015.CrossRefPubMedGoogle Scholar
  23. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F, DiCiolla F, Davoli G, Sani G, Mugelli A. The properties of the pacemaker current I(F)in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol. 2001;33(3):441–8.  https://doi.org/10.1006/jmcc.2000.1316.CrossRefPubMedGoogle Scholar
  24. Cervetto L, Demontis GC, Gargini C. Cellular mechanisms underlying the pharmacological induction of phosphenes. Br J Pharmacol. 2007;150(4):383–90.  https://doi.org/10.1038/sj.bjp.0706998.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, Difrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H. Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation. 2009;119(12):1562–75.  https://doi.org/10.1161/CIRCULATIONAHA.108.804369.CrossRefPubMedGoogle Scholar
  26. Chen YJ, Chen SA, Chang MS, Lin CI. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc Res. 2000;48(2):265–73.CrossRefPubMedGoogle Scholar
  27. Chen S, Wang J, Siegelbaum SA. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide. J Gen Physiol. 2001;117(5):491–504.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen YC, Pan NH, Cheng CC, Higa S, Chen YJ, Chen SA. Heterogeneous expression of potassium currents and pacemaker currents potentially regulates arrhythmogenesis of pulmonary vein cardiomyocytes. J Cardiovasc Electrophysiol. 2009;20(9):1039–45.  https://doi.org/10.1111/j.1540-8167.2009.01480.x.CrossRefPubMedGoogle Scholar
  29. Chiale PA, Garro HA, Schmidberg J, Sanchez RA, Acunzo RS, Lago M, Levy G, Levin M. Inappropriate sinus tachycardia may be related to an immunologic disorder involving cardiac beta adrenergic receptors. Heart Rhythm. 2006;3(10):1182–6.  https://doi.org/10.1016/j.hrthm.2006.06.011.CrossRefPubMedGoogle Scholar
  30. Chow SS, Van Petegem F, Accili EA. Energetics of cyclic AMP binding to HCN channel C terminus reveal negative cooperativity. J Biol Chem. 2012;287(1):600–6.  https://doi.org/10.1074/jbc.M111.269563.CrossRefPubMedGoogle Scholar
  31. Codvelle MMBH. Permanent sinus tachycardia without high frequency functional disorders. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris. 1939;54:1849–52.Google Scholar
  32. Craven KB, Zagotta WN. CNG and HCN channels: two peas, one pod. Annu Rev Physiol. 2006;68:375–401.  https://doi.org/10.1146/annurev.physiol.68.040104.134728.CrossRefPubMedGoogle Scholar
  33. Demontis GC, Gargini C, Paoli TG, Cervetto L. Selective Hcn1 channels inhibition by ivabradine in mouse rod photoreceptors. Invest Ophthalmol Vis Sci. 2009;50(4):1948–55.  https://doi.org/10.1167/iovs.08-2659.CrossRefPubMedGoogle Scholar
  34. DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981a;314:359–76.CrossRefPubMedPubMedCentralGoogle Scholar
  35. DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol. 1981b;314:377–93.CrossRefPubMedPubMedCentralGoogle Scholar
  36. DiFrancesco D. Characterization of the pace-maker current kinetics in calf Purkinje fibres. J Physiol. 1984;348:341–67.CrossRefPubMedPubMedCentralGoogle Scholar
  37. DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 1993;55:455–72.  https://doi.org/10.1146/annurev.ph.55.030193.002323.CrossRefPubMedGoogle Scholar
  38. DiFrancesco D. Dual allosteric modulation of pacemaker (f) channels by cAMP and voltage in rabbit SA node. J Physiol. 1999;515(Pt 2):367–76.CrossRefPubMedPubMedCentralGoogle Scholar
  39. DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs. 2004;64(16):1757–65.CrossRefPubMedGoogle Scholar
  40. DiFrancesco D, Ferroni A. Delayed activation of the cardiac pacemaker current and its dependence on conditioning pre-hyperpolarizations. Pflugers Arch – Eur J Physiol. 1983;396(3):265–7.CrossRefGoogle Scholar
  41. DiFrancesco D, Mangoni M. Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J Physiol. 1994;474(3):473–82.CrossRefPubMedPubMedCentralGoogle Scholar
  42. DiFrancesco D, Ojeda C. Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibres. J Physiol. 1980;308:353–67.CrossRefPubMedPubMedCentralGoogle Scholar
  43. DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351(6322):145–7.  https://doi.org/10.1038/351145a0.CrossRefPubMedGoogle Scholar
  44. DiFrancesco D, Tromba C. Acetylcholine inhibits activation of the cardiac hyperpolarizing-activated current, if. Pflugers Arch – Eur J Physiol. 1987;410(1–2):139–42.CrossRefGoogle Scholar
  45. DiFrancesco D, Tromba C. Muscarinic control of the hyperpolarization-activated current (If) in rabbit sino-atrial node myocytes. J Physiol. 1988;405:493–510.CrossRefPubMedPubMedCentralGoogle Scholar
  46. DiFrancesco D, Ferroni A, Mazzanti M, Tromba C. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J Physiol. 1986;377:61–88.CrossRefPubMedPubMedCentralGoogle Scholar
  47. DiFrancesco D, Ducouret P, Robinson RB. Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science. 1989;243(4891):669–71.CrossRefPubMedGoogle Scholar
  48. Dobrzynski H, Nikolski VP, Sambelashvili AT, Greener ID, Yamamoto M, Boyett MR, Efimov IR. Site of origin and molecular substrate of atrioventricular junctional rhythm in the rabbit heart. Circ Res. 2003;93(11):1102–10.  https://doi.org/10.1161/01.RES.0000101913.95604.B9.CrossRefPubMedGoogle Scholar
  49. Duhme N, Schweizer PA, Thomas D, Becker R, Schroter J, Barends TR, Schlichting I, Draguhn A, Bruehl C, Katus HA, Koenen M. Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. Eur Heart J. 2013;34(35):2768–75.  https://doi.org/10.1093/eurheartj/ehs391.CrossRefPubMedGoogle Scholar
  50. Fenske S, Mader R, Scharr A, Paparizos C, Cao-Ehlker X, Michalakis S, Shaltiel L, Weidinger M, Stieber J, Feil S, Feil R, Hofmann F, Wahl-Schott C, Biel M. HCN3 contributes to the ventricular action potential waveform in the murine heart. Circ Res. 2011;109(9):1015–23.  https://doi.org/10.1161/CIRCRESAHA.111.246173.CrossRefPubMedGoogle Scholar
  51. Fenske S, Krause SC, Hassan SI, Becirovic E, Auer F, Bernard R, Kupatt C, Lange P, Ziegler T, Wotjak CT, Zhang H, Hammelmann V, Paparizos C, Biel M, Wahl-Schott CA. Sick sinus syndrome in HCN1-deficient mice. Circulation. 2013;128(24):2585–94.  https://doi.org/10.1161/CIRCULATIONAHA.113.003712.CrossRefPubMedGoogle Scholar
  52. Fox K, Ford I, Steg PG, Tendera M, Ferrari R, Investigators B. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9641):807–16.  https://doi.org/10.1016/S0140-6736(08)61170-8.CrossRefPubMedGoogle Scholar
  53. Fox K, Ford I, Steg PG, Tardif JC, Tendera M, Ferrari R, Investigators S. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med. 2014;371(12):1091–9.  https://doi.org/10.1056/NEJMoa1406430.CrossRefPubMedGoogle Scholar
  54. Frace AM, Maruoka F, Noma A. External K+ increases Na+ conductance of the hyperpolarization-activated current in rabbit cardiac pacemaker cells. Pflugers Arch – Eur J Physiol. 1992;421(2–3):97–9.Google Scholar
  55. Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582(Pt 2):675–93.  https://doi.org/10.1113/jphysiol.2006.126714.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns. 2003;3(6):777–83.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Greener ID, Tellez JO, Dobrzynski H, Yamamoto M, Graham GM, Billeter R, Boyett MR. Ion channel transcript expression at the rabbit atrioventricular conduction axis. Circ Arrhythm Electrophysiol. 2009;2(3):305–15.  https://doi.org/10.1161/CIRCEP.108.803569.CrossRefPubMedGoogle Scholar
  58. Greener ID, Monfredi O, Inada S, Chandler NJ, Tellez JO, Atkinson A, Taube MA, Billeter R, Anderson RH, Efimov IR, Molenaar P, Sigg DC, Sharma V, Boyett MR, Dobrzynski H. Molecular architecture of the human specialised atrioventricular conduction axis. J Mol Cell Cardiol. 2011;50(4):642–51.  https://doi.org/10.1016/j.yjmcc.2010.12.017.CrossRefPubMedGoogle Scholar
  59. Hancox JC, Levi AJ, Lee CO, Heap P. A method for isolating rabbit atrioventricular node myocytes which retain normal morphology and function. Am J Physiol. 1993;265(2 Pt 2):H755–66.PubMedGoogle Scholar
  60. Harzheim D, Pfeiffer KH, Fabritz L, Kremmer E, Buch T, Waisman A, Kirchhof P, Kaupp UB, Seifert R. Cardiac pacemaker function of HCN4 channels in mice is confined to embryonic development and requires cyclic AMP. EMBO J. 2008;27(4):692–703.  https://doi.org/10.1038/emboj.2008.3.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Herrmann S, Stieber J, Stockl G, Hofmann F, Ludwig A. HCN4 provides a ‘depolarization reserve’ and is not required for heart rate acceleration in mice. EMBO J. 2007;26(21):4423–32.  https://doi.org/10.1038/sj.emboj.7601868.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hoesl E, Stieber J, Herrmann S, Feil S, Tybl E, Hofmann F, Feil R, Ludwig A. Tamoxifen-inducible gene deletion in the cardiac conduction system. J Mol Cell Cardiol. 2008;45(1):62–9.  https://doi.org/10.1016/j.yjmcc.2008.04.008.CrossRefPubMedGoogle Scholar
  63. Hofmann F, Fabritz L, Stieber J, Schmitt J, Kirchhof P, Ludwig A, Herrmann S. Ventricular HCN channels decrease the repolarization reserve in the hypertrophic heart. Cardiovasc Res. 2012;95(3):317–26.  https://doi.org/10.1093/cvr/cvs184.CrossRefPubMedGoogle Scholar
  64. Hoppe UC, Beuckelmann DJ. Modulation of the hyperpolarization-activated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes. Naunyn Schmiedeberg’s Arch Pharmacol. 1998;358(6):635–40.CrossRefGoogle Scholar
  65. Hoppe UC, Jansen E, Sudkamp M, Beuckelmann DJ. Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation. 1998;97(1):55–65.CrossRefPubMedGoogle Scholar
  66. Ishii TM, Takano M, Ohmori H. Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels. J Physiol. 2001;537(Pt 1):93–100.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ishikawa T, Ohno S, Murakami T, Yoshida K, Mishima H, Fukuoka T, Kimoto H, Sakamoto R, Ohkusa T, Aiba T, Nogami A, Sumitomo N, Shimizu W, Yoshiura KI, Horigome H, Horie M, Makita N. Sick sinus syndrome with HCN4 mutations shows early onset and frequent association with atrial fibrillation and left ventricular noncompaction. Heart Rhythm. 2017;14(5):717–24.  https://doi.org/10.1016/j.hrthm.2017.01.020.CrossRefPubMedGoogle Scholar
  68. Joannides R, Moore N, Iacob M, Compagnon P, Lerebours G, Menard JF, Thuillez C. Comparative effects of ivabradine, a selective heart rate-lowering agent, and propranolol on systemic and cardiac haemodynamics at rest and during exercise. Br J Clin Pharmacol. 2006;61(2):127–37.  https://doi.org/10.1111/j.1365-2125.2005.02544.x.CrossRefPubMedGoogle Scholar
  69. Keith A, Flack M. The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J Anat Physiol. 1907;41(Pt 3):172–89.PubMedPubMedCentralGoogle Scholar
  70. Laish-Farkash A, Glikson M, Brass D, Marek-Yagel D, Pras E, Dascal N, Antzelevitch C, Nof E, Reznik H, Eldar M, Luria D. A novel mutation in the HCN4 gene causes symptomatic sinus bradycardia in Moroccan Jews. J Cardiovasc Electrophysiol. 2010;21(12):1365–72.  https://doi.org/10.1111/j.1540-8167.2010.01844.x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Larson ED, St Clair JR, Sumner WA, Bannister RA, Proenza C. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A. 2013;110(44):18011–6.  https://doi.org/10.1073/pnas.1308477110.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lau YT, Wong CK, Luo J, Leung LH, Tsang PF, Bian ZX, Tsang SY. Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflugers Arch – Eur J Physiol. 2011;461(1):191–202.  https://doi.org/10.1007/s00424-010-0899-9.CrossRefGoogle Scholar
  73. Lee CH, MacKinnon R. Structures of the human HCN1 hyperpolarization-activated channel. Cell. 2017;168(1–2):111–20. e111.  https://doi.org/10.1016/j.cell.2016.12.023.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Li YD, Hong YF, Zhang Y, Zhou XH, Ji YT, Li HL, Hu GJ, Li JX, Sun L, Zhang JH, Xin Q, Yusufuaji Y, Xiong J, Tang BP. Association between reversal in the expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and age-related atrial fibrillation. Med Sci Monit. 2014;20:2292–7.  https://doi.org/10.12659/MSM.892505.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Li N, Csepe TA, Hansen BJ, Dobrzynski H, Higgins RS, Kilic A, Mohler PJ, Janssen PM, Rosen MR, Biesiadecki BJ, Fedorov VV. Molecular mapping of sinoatrial node HCN channel expression in the human heart. Circ Arrhythm Electrophysiol. 2015;8(5):1219–27.  https://doi.org/10.1161/CIRCEP.115.003070.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res. 2013;113(4):399–407.  https://doi.org/10.1161/CIRCRESAHA.113.301588.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lolicato M, Nardini M, Gazzarrini S, Moller S, Bertinetti D, Herberg FW, Bolognesi M, Martin H, Fasolini M, Bertrand JA, Arrigoni C, Thiel G, Moroni A. Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. 2011;286(52):44811–20.  https://doi.org/10.1074/jbc.M111.297606.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature. 1998;393(6685):587–91.  https://doi.org/10.1038/31255.CrossRefPubMedGoogle Scholar
  79. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M. Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 1999;18(9):2323–9.  https://doi.org/10.1093/emboj/18.9.2323.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J. 2003;22(2):216–24.  https://doi.org/10.1093/emboj/cdg032.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Macri V, Mahida SN, Zhang ML, Sinner MF, Dolmatova EV, Tucker NR, McLellan M, Shea MA, Milan DJ, Lunetta KL, Benjamin EJ, Ellinor PT. A novel trafficking-defective HCN4 mutation is associated with early-onset atrial fibrillation. Heart Rhythm. 2014;11(6):1055–62.  https://doi.org/10.1016/j.hrthm.2014.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.  https://doi.org/10.1152/physrev.00018.2007.CrossRefPubMedGoogle Scholar
  83. Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO, Postma AV, van der Bilt IA, Baars MJ, van Haelst PL, Caliskan K, Hoedemaekers YM, Le Scouarnec S, Redon R, Pinto YM, Christiaans I, Wilde AA, Bezzina CR. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy. J Am Coll Cardiol. 2014;64(8):745–56.  https://doi.org/10.1016/j.jacc.2014.05.045.CrossRefPubMedGoogle Scholar
  84. Mistrik P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M. The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides. J Biol Chem. 2005;280(29):27056–61.  https://doi.org/10.1074/jbc.M502696200.CrossRefPubMedGoogle Scholar
  85. Monnet X, Ghaleh B, Colin P, de Curzon OP, Giudicelli JF, Berdeaux A. Effects of heart rate reduction with ivabradine on exercise-induced myocardial ischemia and stunning. J Pharmacol Exp Ther. 2001;299(3):1133–9.PubMedGoogle Scholar
  86. Moroni A, Barbuti A, Altomare C, Viscomi C, Morgan J, Baruscotti M, DiFrancesco D. Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Arch – Eur J Physiol. 2000;439(5):618–26.CrossRefGoogle Scholar
  87. Much B, Wahl-Schott C, Zong X, Schneider A, Baumann L, Moosmang S, Ludwig A, Biel M. Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. 2003;278(44):43781–6.  https://doi.org/10.1074/jbc.M306958200.CrossRefPubMedGoogle Scholar
  88. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol. 1996;493(Pt 3):801–18.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Netter MF, Zuzarte M, Schlichthorl G, Klocker N, Decher N. The HCN4 channel mutation D553N associated with bradycardia has a C-linker mediated gating defect. Cell Physiol Biochem. 2012;30(5):1227–40.  https://doi.org/10.1159/000343314.CrossRefPubMedGoogle Scholar
  90. Nof E, Luria D, Brass D, Marek D, Lahat H, Reznik-Wolf H, Pras E, Dascal N, Eldar M, Glikson M. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116(5):463–70.  https://doi.org/10.1161/CIRCULATIONAHA.107.706887.CrossRefPubMedGoogle Scholar
  91. Nolan MF, Malleret G, Lee KH, Gibbs E, Dudman JT, Santoro B, Yin D, Thompson RF, Siegelbaum SA, Kandel ER, Morozov A. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells. Cell. 2003;115(5):551–64.CrossRefPubMedGoogle Scholar
  92. Oliphant CS, Owens RE, Bolorunduro OB, Jha SK. Ivabradine: a review of labeled and off-label uses. Am J Cardiovasc Drugs. 2016;16(5):337–47.  https://doi.org/10.1007/s40256-016-0178-z.CrossRefPubMedGoogle Scholar
  93. Omelyanenko A, Sekyrova P, Andang M. ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner. SpringerPlus. 2016;5:41.  https://doi.org/10.1186/s40064-016-1678-7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pian P, Bucchi A, Robinson RB, Siegelbaum SA. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2. J Gen Physiol. 2006;128(5):593–604.  https://doi.org/10.1085/jgp.200609648.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Porciatti F, Pelzmann B, Cerbai E, Schaffer P, Pino R, Bernhart E, Koidl B, Mugelli A. The pacemaker current I(f) in single human atrial myocytes and the effect of beta-adrenoceptor and A1-adenosine receptor stimulation. Br J Pharmacol. 1997;122(5):963–9.  https://doi.org/10.1038/sj.bjp.0701473.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Qu J, Altomare C, Bucchi A, DiFrancesco D, Robinson RB. Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells. Pflugers Arch – Eur J Physiol. 2002;444(5):597–601.  https://doi.org/10.1007/s00424-002-0860-7.CrossRefGoogle Scholar
  97. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell. 1998;93(5):717–29.CrossRefPubMedGoogle Scholar
  98. Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The hyperpolarization-activated cyclic nucleotide-gated channels: from biophysics to pharmacology of a unique family of ion channels. Pharmacol Rev. 2017;69(4):354–95.  https://doi.org/10.1124/pr.117.014035.CrossRefPubMedGoogle Scholar
  99. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O, Isbrandt D. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111(10):1537–45.  https://doi.org/10.1172/JCI16387.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Schweizer PA, Duhme N, Thomas D, Becker R, Zehelein J, Draguhn A, Bruehl C, Katus HA, Koenen M. cAMP sensitivity of HCN pacemaker channels determines basal heart rate but is not critical for autonomic rate control. Circ Arrhythm Electrophysiol. 2010;3(5):542–52.  https://doi.org/10.1161/CIRCEP.110.949768.CrossRefPubMedGoogle Scholar
  101. Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P, Mereles D, Buss SJ, Seyler C, Bruehl C, Draguhn A, Koenen M, Meder B, Katus HA, Thomas D. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol. 2014;64(8):757–67.  https://doi.org/10.1016/j.jacc.2014.06.1155.CrossRefPubMedGoogle Scholar
  102. Sheldon RS, Grubb BP II, Olshansky B, Shen WK, Calkins H, Brignole M, Raj SR, Krahn AD, Morillo CA, Stewart JM, Sutton R, Sandroni P, Friday KJ, Hachul DT, Cohen MI, Lau DH, Mayuga KA, Moak JP, Sandhu RK, Kanjwal K. 2015 Heart Rhythm Society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 2015;12(6):e41–63.  https://doi.org/10.1016/j.hrthm.2015.03.029.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Silverman ME, Grove D, Upshaw CB Jr. Why does the heart beat? The discovery of the electrical system of the heart. Circulation. 2006;113(23):2775–81.  https://doi.org/10.1161/CIRCULATIONAHA.106.616771.CrossRefPubMedGoogle Scholar
  104. Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, Hofmann F, Ludwig A. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci U S A. 2003;100(25):15235–40.  https://doi.org/10.1073/pnas.2434235100.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Stieber J, Stockl G, Herrmann S, Hassfurth B, Hofmann F. Functional expression of the human HCN3 channel. J Biol Chem. 2005;280(41):34635–43.  https://doi.org/10.1074/jbc.M502508200.CrossRefPubMedGoogle Scholar
  106. Stillitano F, Lonardo G, Zicha S, Varro A, Cerbai E, Mugelli A, Nattel S. Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol. 2008;45(2):289–99.  https://doi.org/10.1016/j.yjmcc.2008.04.013.CrossRefPubMedGoogle Scholar
  107. Stillitano F, Lonardo G, Giunti G, Del Lungo M, Coppini R, Spinelli V, Sartiani L, Poggesi C, Mugelli A, Cerbai E. Chronic atrial fibrillation alters the functional properties of If in the human atrium. J Cardiovasc Electrophysiol. 2013;24(12):1391–400.  https://doi.org/10.1111/jce.12212.CrossRefPubMedGoogle Scholar
  108. Suenari K, Cheng CC, Chen YC, Lin YK, Nakano Y, Kihara Y, Chen SA, Chen YJ. Effects of ivabradine on the pulmonary vein electrical activity and modulation of pacemaker currents and calcium homeostasis. J Cardiovasc Electrophysiol. 2012;23(2):200–6.  https://doi.org/10.1111/j.1540-8167.2011.02173.x.CrossRefPubMedGoogle Scholar
  109. Sulfi S, Timmis AD. Ivabradine – the first selective sinus node I(f) channel inhibitor in the treatment of stable angina. Int J Clin Pract. 2006;60(2):222–8.  https://doi.org/10.1111/j.1742-1241.2006.00817.x.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, Investigators S. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376(9744):875–85.  https://doi.org/10.1016/S0140-6736(10)61198-1.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Thollon C, Bidouard JP, Cambarrat C, Lesage L, Reure H, Delescluse I, Vian J, Peglion JL, Vilaine JP. Stereospecific in vitro and in vivo effects of the new sinus node inhibitor (+)-S 16257. Eur J Pharmacol. 1997;339(1):43–51.CrossRefPubMedGoogle Scholar
  112. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasunami M, Takishita S, Yamashina A, Ohe T, Sunamori M, Hiraoka M, Kimura A. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279(26):27194–8.  https://doi.org/10.1074/jbc.M311953200.CrossRefPubMedGoogle Scholar
  113. Ulens C, Tytgat J. Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem. 2001;276(9):6069–72.  https://doi.org/10.1074/jbc.C000738200.CrossRefPubMedGoogle Scholar
  114. Vedantham V, Scheinman MM. Familial inappropriate sinus tachycardia: a new chapter in the story of HCN4 channelopathies. Eur Heart J. 2017;38(4):289–91.  https://doi.org/10.1093/eurheartj/ehv635.CrossRefPubMedGoogle Scholar
  115. Vilaine JP, Bidouard JP, Lesage L, Reure H, Peglion JL. Anti-ischemic effects of ivabradine, a selective heart rate-reducing agent, in exercise-induced myocardial ischemia in pigs. J Cardiovasc Pharmacol. 2003;42(5):688–96.CrossRefPubMedGoogle Scholar
  116. Viscomi C, Altomare C, Bucchi A, Camatini E, Baruscotti M, Moroni A, DiFrancesco D. C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem. 2001;276(32):29930–4.  https://doi.org/10.1074/jbc.M103971200.CrossRefPubMedGoogle Scholar
  117. Yamamoto M, Dobrzynski H, Tellez J, Niwa R, Billeter R, Honjo H, Kodama I, Boyett MR. Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res. 2006;72(2):271–81.  https://doi.org/10.1016/j.cardiores.2006.07.026.CrossRefPubMedGoogle Scholar
  118. Yaniv Y, Ahmet I, Tsutsui K, Behar J, Moen JM, Okamoto Y, Guiriba TR, Liu J, Bychkov R, Lakatta EG. Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated alterations in heart rate variability in vivo. Aging Cell. 2016;15(4):716–24.  https://doi.org/10.1111/acel.12483.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Ye W, Song Y, Huang Z, Zhang Y, Chen Y. Genetic regulation of sinoatrial node development and pacemaker program in the venous pole. J Cardiovasc Dev Dis. 2015;2(4):282–98.  https://doi.org/10.3390/jcdd2040282.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Zhou J, Ding WG, Makiyama T, Miyamoto A, Matsumoto Y, Kimura H, Tarutani Y, Zhao J, Wu J, Zang WJ, Matsuura H, Horie M. A novel HCN4 mutation, G1097W, is associated with atrioventricular block. Circ J. 2014;78(4):938–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Annalisa Bucchi
    • 1
  • Chiara Piantoni
    • 1
  • Andrea Barbuti
    • 1
  • Dario DiFrancesco
    • 1
  • Mirko Baruscotti
    • 1
  1. 1.Department of Biosciences, The PaceLab and “Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata”Università degli Studi di MilanoMilanoItaly

Personalised recommendations