Potassium Channels in the Heart

  • Morten B. ThomsenEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Ionic currents over the plasma membrane through channels are the cornerstone of excitable cells. Human cardiomyocytes are excitable and continuously cycle between a depolarized and a repolarized state every second throughout human life, initiating and coordinating cardiac pump function. Ion channels selective for potassium (K+) critically participate in cellular repolarization and contribute to stabilizing the diastolic membrane potential, thus shaping the cardiac action potential. Four different subfamilies of potassium channels are present in the heart: small conductance, calcium-activated potassium channels (SK or KCa2), inwardly rectifying potassium channels (Kir), two-pore-domain potassium channels (K2P), and voltage-gated potassium channels (KV). In the present review, the structure and biophysical function of these cardiac potassium ion channels are reviewed. Moreover, rectification, inactivation, and current dependency on the extracellular potassium concentration are explained.



The helpful discussions with Dr. Kirstine Calloe are profoundly appreciated.

Compliance with Ethical Standards

Sources of Funding


Conflict of Interest

The author declares that he has no conflict of interest.

Ethical Approval

All animal studies summarized and reviewed in this article were conducted based on international, national, and/or institutional guidelines for the care and use of animals.


  1. An WF, Bowlby MR, Betty M, et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000;403:553–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anumonwo JM, Lopatin AN. Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol. 2010;48:45–54.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey GK. (V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996;384:78–80.PubMedCrossRefGoogle Scholar
  4. Berkefeld H, Fakler B, Schulte U. Ca2+−activated K+ channels: from protein complexes to function. Physiol Rev. 2010;90:1437–59.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bertaso F, Sharpe CC, Hendry BM, James AF. Expression of voltage-gated K+ channels in human atrium. Basic Res Cardiol. 2002;97:424–33.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bonilla IM, Long VP 3rd, Vargas-Pinto P, et al. Calcium-activated potassium current modulates ventricular repolarization in chronic heart failure. PLoS One. 2014;9:e108824.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bouchard R, Fedida D. Closed- and open-state binding of 4-aminopyridine to the cloned human potassium channel Kv1.5. J Pharmacol Exp Ther. 1995;275:864–76.PubMedPubMedCentralGoogle Scholar
  8. Brouillette J, Clark RB, Giles WR, Fiset C. Functional properties of K+ currents in adult mouse ventricular myocytes. J Physiol. 2004;559:777–98.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brunet S, Aimond F, Li H, et al. Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J Physiol. 2004;559:103–20.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Calloe K, Nof E, Jespersen T, et al. Comparison of the effects of a transient outward potassium channel activator on currents recorded from atrial and ventricular cardiomyocytes. J Cardiovasc Electrophysiol. 2011;22:1057–66.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Calloe K, Goodrow R, Olesen SP, Antzelevitch C, Cordeiro JM. Tissue-specific effects of acetylcholine in the canine heart. Am J Phys Heart Circ Phys. 2013;305:H66–75.Google Scholar
  12. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR. DREAM is a Ca2+−regulated transcriptional repressor. Nature. 1999;398:80–4.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chang PC, Turker I, Lopshire JC, et al. Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J Am Heart Assoc. 2013;2:e004713.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science (New York, NY). 2003;299:251–4.CrossRefGoogle Scholar
  15. Cordeiro JM, Calloe K, Aschar-Sobbi R, et al. Physiological roles of the transient outward current Ito in normal and diseased hearts. Front Biosci (Schol Ed). 2016;8:143–59.CrossRefGoogle Scholar
  16. Decher N, Wemhoner K, Rinne S, et al. Knock-out of the potassium channel TASK-1 leads to a prolonged QT interval and a disturbed QRS complex. Cell Physiol Biochem. 2011;28:77–86. 19PubMedCrossRefPubMedCentralGoogle Scholar
  17. Decher N, Kiper AK, Rolfes C, Schulze-Bahr E, Rinne S. The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch. 2015;467:1055–67.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Dong DL, Bai YL, Cai BZ. Calcium-activated potassium channels: potential target for cardiovascular diseases. Adv Protein Chem Struct Biol. 2016;104:233–61.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Donner BC, Schullenberg M, Geduldig N, et al. Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. Basic Res Cardiol. 2011;106:75–87.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ellinghaus P, Scheubel RJ, Dobrev D, et al. Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. J Thorac Cardiovasc Surg. 2005;129:1383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fakler B, Brandle U, Glowatzki E, Weidemann S, Zenner HP, Ruppersberg JP. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell. 1995;80:149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Feng J, Wible B, Li GR, Wang Z, Nattel S. Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res. 1997;80:572–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Firek L, Giles WR. Outward currents underlying repolarization in human atrial myocytes. Cardiovasc Res. 1995;30:31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fiset C, Clark RB, Shimoni Y, Giles WR. Shal-type channels contribute to the Ca2+-independent transient outward K+ current in rat ventricle. J Physiol. 1997;500(Pt 1):51–64.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Foeger NC, Wang W, Mellor RL, Nerbonne JM. Stabilization of Kv4 protein by the accessory K(+) channel interacting protein 2 (KChIP2) subunit is required for the generation of native myocardial fast transient outward K(+) currents. J Physiol. 2013;591:4149–66.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Freites JA, Schow EV, White SH, Tobias DJ. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor. Biophys J. 2012;102:L44–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gaborit N, Le Bouter S, Szuts V, et al. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol. 2007;582:675–93.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gaborit N, Varro A, Le Bouter S, et al. Gender-related differences in ion-channel and transporter subunit expression in non-diseased human hearts. J Mol Cell Cardiol. 2010;49:639–46.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Gintant GA. Characterization and functional consequences of delayed rectifier current transient in ventricular repolarization. Am J Phys Heart Circ Phys. 2000;278:H806–17.Google Scholar
  30. Giudicessi JR, Ye D, Tester DJ, et al. Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm. 2011;8:1024–32.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-p-domain subunits. Nat Rev Neurosci. 2001;2:175–84.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev. 2005;57:527–40.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Grubb S, Calloe K, Thomsen MB. Impact of KChIP2 on cardiac electrophysiology and the progression of heart failure. Front Physiol. 2012;3:118.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grubb S, Speerschneider T, Occhipinti D, et al. Loss of K+ currents in heart failure is accentuated in KChIP2 deficient mice. J Cardiovasc Electrophysiol. 2014;25:896–904.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Grubb S, Aistrup GL, Koivumaki JT, et al. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2. Am J Phys Heart Circ Phys. 2015;309:H481–9.Google Scholar
  36. Grunnet M, Jespersen T, Angelo K, et al. Pharmacological modulation of SK3 channels. Neuropharmacology. 2001;40:879–87.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Guo W, Xu H, London B, Nerbonne JM. Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol. 1999;521(Pt 3):587–99.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Guo W, Li H, London B, Nerbonne JM. Functional consequences of elimination of i(to,f) and i(to,s): early afterdepolarizations, atrioventricular block, and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant-negative Kv4 alpha subunit. Circ Res. 2000;87:73–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Guo W, Malin SA, Johns DC, Jeromin A, Nerbonne JM. Modulation of Kv4-encoded K(+) currents in the mammalian myocardium by neuronal calcium sensor-1. J Biol Chem. 2002;277:26436–43.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473–508.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23:2684–95.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ishibashi K, Suzuki M, Imai M. Molecular cloning of a novel form (two-repeat) protein related to voltage-gated sodium and calcium channels. Biochem Biophys Res Commun. 2000;270:370–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jost N, Virag L, Bitay M, et al. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation. 2005;112:1392–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet (London, England). 2000;356:2052–8.CrossRefGoogle Scholar
  46. Koumi S, Wasserstrom JA, Ten Eick RE. Beta-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in Guinea-pig ventricle. J Physiol. 1995a;486(Pt 3):661–78.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Koumi S, Backer CL, Arentzen CE, Sato R. Beta-adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-18 adrenergic stimulation in failing human hearts. J Clin Invest. 1995b;96:2870–81.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993;362:127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kubo Y, Adelman JP, Clapham DE, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev. 2005;57:509–26.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kuo HC, Cheng CF, Clark RB, et al. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell. 2001;107:801–13.PubMedCrossRefGoogle Scholar
  51. Kurata HT, Fedida D. A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol. 2006;92:185–208.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Li N, Timofeyev V, Tuteja D, et al. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol. 2009;587:1087–100.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liin SI, Barro-Soria R, Larsson HP. The KCNQ1 channel—remarkable flexibility in gating allows for functional versatility. J Physiol. 2015;593:2605–15.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu J, Kim KH, Morales MJ, Heximer SP, Hui CC, Backx PH. Kv4.3-encoded fast transient outward current is presented in Kv4.2 knockout mouse Cardiomyocytes. PLoS One. 2015;10:e0133274.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325:321–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. London B, Wang DW, Hill JA, Bennett PB. The transient outward current in mice lacking the potassium channel gene Kv1.4. J Physiol. 1998;509(Pt 1):171–82.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lopes CM, Gallagher PG, Buck ME, Butler MH, Goldstein SA. Proton block and voltage gating are potassium-dependent in the cardiac leak channel Kcnk3. J Biol Chem. 2000;275:16969–78.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW. Effects of external cations and mutations in the pore region on C-type inactivation of shaker potassium channels. Recept Channels. 1993;1:61–71.PubMedPubMedCentralGoogle Scholar
  59. Lu L, Zhang Q, Timofeyev V, et al. Molecular coupling of a Ca2+-activated K+ channel to L-type Ca2+ channels via alpha-actinin2. Circ Res. 2007;100:112–20.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Lugenbiel P, Wenz F, Syren P, et al. TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res Cardiol. 2017;112:8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lundby A, Jespersen T, Schmitt N, et al. Effect of the Ito activator NS5806 on cloned Kv4 channels depends on the accessory protein KChIP2. Br J Pharmacol. 2010;160:2028–44.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lundby A, Andersen MN, Steffensen AB, et al. In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling. Sci Signal. 2013;6:rs11.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Melnyk P, Zhang L, Shrier A, Nattel S. Differential distribution of Kir2.1 and Kir2.3 subunits in canine atrium and ventricle. Am J Phys Heart Circ Phys. 2002;283:H1123–33.Google Scholar
  64. Mitcheson JS, Sanguinetti MC. Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels. Cell Physiol Biochem. 1999;9:201–16.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Morales MJ, Wee JO, Wang S, Strauss HC, Rasmusson RL. The N-terminal domain of a K+ channel beta subunit increases the rate of C-type inactivation from the cytoplasmic side of the channel. Proc Natl Acad Sci U S A. 1996;93:15119–23.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93:168–77.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev. 2005;85:1205–53.PubMedCrossRefGoogle Scholar
  68. Nichols CG, Makhina EN, Pearson WL, Sha Q, Lopatin AN. Inward rectification and implications for cardiac excitability. Circ Res. 1996;78:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol. 2010;48:12–25.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Olesen MS, Refsgaard L, Holst AG, et al. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res. 2013;98:488–95.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Olson TM, Alekseev AE, Liu XK, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Human molecular genetics 2006;15:2185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Oosterhoff P, Thomsen MB, Maas JN, et al. High-rate pacing reduces variability of repolarization and prevents repolarization-dependent arrhythmias in dogs with chronic AV block. J Cardiovasc Electrophysiol. 2010;1384-91(23):21.Google Scholar
  73. Ozgen N, Dun W, Sosunov EA, et al. Early electrical remodeling in rabbit pulmonary vein results from trafficking of intracellular SK2 channels to membrane sites. Cardiovasc Res. 2007;75:758–69.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Patel SP, Campbell DL. Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol. 2005;569:7–39.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Perry MD, Ng CA, Mann SA, et al. Getting to the heart of hERG K(+) channel gating. J Physiol. 2015;593:2575–85.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Pongs O, Schwarz JR. Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev. 2010;90:755–96.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800.PubMedCrossRefGoogle Scholar
  79. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol. 2005;565:751–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rasmusson RL, Morales MJ, Wang S, et al. Inactivation of voltage-gated cardiac K+ channels. Circ Res. 1998;82:739–50.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ravens U, Odening KE. Atrial fibrillation: therapeutic potential of atrial K+ channel blockers. Pharmacol Ther. 2017;176:13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ravens U, Wettwer E. Ultra-rapid delayed rectifier channels: molecular basis and therapeutic implications. Cardiovasc Res. 2011;89:776–85.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rinne S, Kiper AK, Schlichthorl G, et al. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J Mol Cell Cardiol. 2015;81:71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ronkainen JJ, Hanninen SL, Korhonen T, et al. Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol. 2011;2669-86(21):589.Google Scholar
  85. Rosati B, Pan Z, Lypen S, et al. Regulation of KChIP2 potassium channel beta subunit gene expression underlies the gradient of transient outward current in canine and human ventricle. J Physiol. 2001;533:119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rosati B, Grau F, Rodriguez S, Li H, Nerbonne JM, McKinnon D. Concordant expression of KChIP2 mRNA, protein and transient outward current throughout the canine ventricle. J Physiol. 2003;548:815–22.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sah R, Ramirez RJ, Oudit GY, et al. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol. 2003;546:5–18.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature. 1983;303:250–3.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol. 1990;96:195–215.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Sanguinetti MC, Jurkiewicz NK. Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. Pflugers Arch. 1992;420:180–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996;384:80–3.PubMedCrossRefGoogle Scholar
  92. Sanguinetti MC, Johnson JH, Hammerland LG, et al. Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol. 1997;51:491–8.PubMedPubMedCentralGoogle Scholar
  93. Schmidt C, Wiedmann F, Schweizer PA, Katus HA, Thomas D. Inhibition of cardiac two-pore-domain K+ (K2P) channels—an emerging antiarrhythmic concept. Eur J Pharmacol. 2014;738:250–5.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Schmidt C, Wiedmann F, Voigt N, et al. Upregulation of K(2P)3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation. 2015;132:82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Seebohm G, Sanguinetti MC, Pusch M. Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. J Physiol. 2003;552:369–78.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Skibsbye L, Poulet C, Diness JG, et al. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc Res. 2014;103:156–67.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res. 1999;42:377–90.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Snyders DJ, Tamkun MM, Bennett PB. A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression. J Gen Physiol. 1993;101:513–43.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Soltysinska E, Olesen SP, Christ T, et al. Transmural expression of ion channels and transporters in human nondiseased and end-stage failing hearts. Pflugers Arch. 2009;459:11–23.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Soltysinska E, Bentzen BH, Barthmes M, et al. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury. PLoS One. 2014;9:e103402.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC. Fast inactivation causes rectification of the IKr channel. J Gen Physiol. 1996;107:611–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Speerschneider T, Thomsen MB. Physiology and analysis of the electrocardiographic T wave in mice. Acta Physiol (Oxf). 2013;209:262–71.CrossRefGoogle Scholar
  104. Speerschneider T, Grubb S, Metoska A, Olesen SP, Calloe K, Thomsen MB. Development of heart failure is independent of K+ channel-interacting protein 2 expression. J Physiol. 2013;591:5923–37.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Speerschneider T, Grubb S, Olesen SP, Calloe K, Thomsen MB. Ventricular repolarization time, location of pacing stimulus and current pulse amplitude conspire to determine arrhythmogenicity in mice. Acta Physiol (Oxf). 2017;219:660–8.CrossRefGoogle Scholar
  106. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–40.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102:1178–85.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Tamargo J, Caballero R, Gómez R, Valenzuela C, Delpón E. Pharmacology of cardiac potassium channels. Cardiovasc Res. 2004;62:9–33.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Teutsch C, Kondo RP, Dederko DA, Chrast J, Chien KR, Giles WR. Spatial distributions of Kv4 channels and KChip2 isoforms in the murine heart based on laser capture microdissection. Cardiovasc Res. 2007;73:739–49.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Thomsen MB, Verduyn SC, Stengl M, et al. Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation. 2004;110:2453–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Thomsen MB, Matz J, Volders PG, Vos MA. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias. Pharmacol Ther. 2006a;112:150–70.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Thomsen MB, Beekman JD, Attevelt NJ, et al. No proarrhythmic properties of the antibiotics Moxifloxacin or azithromycin in anaesthetized dogs with chronic-AV block. Br J Pharmacol. 2006b;149:1039–48.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Thomsen MB, Sosunov EA, Anyukhovsky EP, Ozgen N, Boyden PA, Rosen MR. Deleting the accessory subunit KChIP2 results in loss of I(to,f) and increased I(K,slow) that maintains normal action potential configuration. Heart Rhythm. 2009a;6:370–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Thomsen MB, Wang C, Ozgen N, Wang HG, Rosen MR, Pitt GS. Accessory subunit KChIP2 modulates the cardiac L-type calcium current. Circ Res. 2009b;104:1382–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Thomsen MB, Foster E, Nguyen KH, Sosunov EA. Transcriptional and electrophysiological consequences of KChIP2-mediated regulation of CaV1.2. Channels (Austin). 2009c;3:308–10.CrossRefGoogle Scholar
  116. Tuteja D, Xu D, Timofeyev V, et al. Differential expression of small-conductance Ca2+-activated K+ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Phys Heart Circ Phys. 2005;289:H2714–23.Google Scholar
  117. Unudurthi SD, Wu X, Qian L, et al. Two-pore K+ channel TREK-1 regulates Sinoatrial node membrane excitability. J Am Heart Assoc. 2016;5:e002865.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 2012;92:1393–478.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Volders PG, Sipido KR, Carmeliet E, Spatjens RL, Wellens HJ, Vos MA. Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation. 1999a;99:206–10.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Volders PG, Sipido KR, Vos MA, et al. Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation. 1999b;100:2455–61.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Volders PG, Stengl M, van Opstal JM, et al. Probing the contribution of IKs to canine ventricular repolarization: key role for beta-adrenergic receptor stimulation. Circulation. 2003;107:2753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD investigators. Survival with oral d-Sotalol. Lancet (London, England). 1996;348:7–12.CrossRefGoogle Scholar
  123. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Wang W, Watanabe M, Nakamura T, Kudo Y, Ochi R. Properties and expression of Ca2+−activated K+ channels in H9c2 cells derived from rat ventricle. Am J Phys. 1999a;276:H1559–66.Google Scholar
  125. Wang Z, Feng J, Shi H, Pond A, Nerbonne JM, Nattel S. Potential molecular basis of different physiological properties of the transient outward K+ current in rabbit and human atrial myocytes. Circ Res. 1999b;84:551–61.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev. 2005;57:463–72.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Weiss JN, Qu Z, Shivkumar K. Electrophysiology of hypokalemia and hyperkalemia. Circ Arrhythm Electrophysiol. 2017;10(3)Google Scholar
  128. Wettwer E, Amos GJ, Posival H, Ravens U. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res. 1994;75:473–82.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Wiedmann F, Schmidt C, Lugenbiel P, et al. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system. Clin Sci. 2016;130:643–50.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Winckels SK, Thomsen MB, Oosterhoff P, et al. High-septal pacing reduces ventricular electrical remodeling and proarrhythmia in chronic atrioventricular block dogs. J Am Coll Cardiol. 2007;50:906–13.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Winther SV, Tuomainen T, Borup R, Tavi P, Antoons G, Thomsen MB. Potassium Channel interacting protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling. Sci Rep. 2016;6:28760.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Xiao L, Koopmann TT, Ordog B, et al. Unique cardiac Purkinje fiber transient outward current beta-subunit composition: a potential molecular link to idiopathic ventricular fibrillation. Circ Res. 2013;112:1310–22.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Xu W, Liu Y, Wang S, et al. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298:1029–33.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Yang T, Snyders DJ, Roden DM. Rapid inactivation determines the rectification and [K+]o dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. Circ Res. 1997;80:782–9.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Yu FH, Catterall WA. The VGL-Chanome: a protein superfamily specialized for electrical Signaling and ionic homeostasis. Sci STKE. 2004;2004:re15.PubMedPubMedCentralGoogle Scholar
  137. Zhang H, Zhu B, Yao JA, Tseng GN. Differential effects of S6 mutations on binding of quinidine and 4-aminopyridine to rat isoform of Kv1.4: common site but different factors in determining blockers’ binding affinity. J Pharmacol Exp Ther. 1998;287:332–43.PubMedPubMedCentralGoogle Scholar
  138. Zhang H, Flagg TP, Nichols CG. Cardiac sarcolemmal K(ATP) channels: latest twists in a questing tale! J Mol Cell Cardiol. 2010;48:71–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations