Advertisement

Novel Imaging Techniques in Cardiac Ion Channel Research

  • Esperanza Agullo-Pascual
  • Alejandra Leo-Macias
  • Donna R. Whelan
  • Mario Delmar
  • Eli Rothenberg
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Light microscopy has long been at the forefront of biological research, perhaps most significantly in the form of fluorescence microscopy. This technique, paired with the ongoing discovery and synthesis of increasingly brilliant fluorophores, allows for visualization of the internal machinations of cells with molecular specificity. However, until recently, a persistent limitation of fluorescence microscopy—the diffraction of visible light—has restricted elucidation of the subcellular organization and localization of molecules to spatial resolutions of 200–300 nanometers. The invention and implementation of several super-resolution fluorescence microscopies (SRFMs) over the last 10 years have circumvented this diffraction limit and allowed up to tenfold improvements in resolution. Applications of SRFM in cardiology research have already illuminated aspects of the cardiac nanoscale architecture which were previously unobservable, opening the door for new avenues of research. These discoveries include the sub-diffraction structure of the intercalated disk, the t-tubular network, and excitation-contraction coupling. In this chapter we will review SRFM methodologies, present some examples of their successful application in cardiac research, and discuss the techniques’ advantages, ongoing challenges, and future potential.

Keywords

Super-resolution microscopy PALM STORM STED Single-molecule localization microscopy 

Notes

Acknowledgments

The authors acknowledge the help and critical discussions with members of the Rothenberg and Delmar labs.

Compliance with Ethical Standards

Sources of Funding

Work in the Rothenberg lab is funded by the NIH grants R01-GM057691 and R21-CA187612 and the American Cancer Society grant (ACS 130304-RSG-16-241-01-DMC). Research in the Delmar lab is supported by NIH grants RO1-GM57691, RO1-HL134328, and RO1-HL136179.

Conflict of Interest

Authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Agullo-Pascual E, Reid DA, Keegan S, Sidhu M, Fenyö D, Rothenberg E, et al. Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. Cardiovasc Res. 2013;100:231–40.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang FX, Li Z, et al. Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res. 2014;104:371–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andronov L, Lutz Y, Vonesch JL, Klaholz BP. SharpViSu: integrated analysis and segmentation of super-resolution microscopy data. Bioinformatics. 2016;32:2239–41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baddeley D, Jayasinghe ID, Lam L, Rossberger S, Cannell MB, Soeller C. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes. Proc Natl Acad Sci U S A. 2009;106:22275–80.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.CrossRefPubMedGoogle Scholar
  6. Caetano FA, Dirk BS, Tam JH, Cavanagh PC, Goiko M, Ferguson SS, et al. MIiSR: molecular interactions in super-resolution imaging enables the analysis of protein interactions, dynamics and formation of multi-protein structures. PLoS Comput Biol. 2015;11:e1004634.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF, Davidson MW, et al. Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol. 2015;17:880–92.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cerrone M, Lin X, Zhang M, Agullo-Pascual E, Pfenniger A, Chkourko Gusky H, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation 2014;129:1092–1103.Google Scholar
  9. Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A. 2012;109:4455–60.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron. 2010;68:843–56.CrossRefPubMedPubMedCentralGoogle Scholar
  11. De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, et al. Strategic positioning and biased activity of the mitochondrial calcium Uniporter in cardiac muscle. J Biol Chem. 2016;291:23343–62.CrossRefGoogle Scholar
  12. Franke C, Sauer M, van de Linde S. Photometry unlocks 3D information from 2D localization microscopy data. Nat Methods. 2017;14:41–4.CrossRefPubMedGoogle Scholar
  13. Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, Slater RE, et al. Deleting titin’s I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function. Proc Natl Acad Sci U S A. 2014;111:14589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172–6.CrossRefPubMedGoogle Scholar
  15. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–2.CrossRefPubMedGoogle Scholar
  16. Hennig S, van de Linde S, Lummer M, Simonis M, Huser T, Sauer M. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 2015;15:1374–81.CrossRefPubMedGoogle Scholar
  17. Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91:4258–72.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Holm T, Klein T, Loschberger A, Klamp T, Wiebusch G, van de Linde S, et al. A blueprint for cost-efficient localization microscopy. Chemphyschem. 2014;15:651–4.CrossRefPubMedGoogle Scholar
  19. Hou Y, Jayasinghe I, Crossman DJ, Baddeley D, Soeller C. Nanoscale analysis of ryanodine receptor clusters in dyadic couplings of rat cardiac myocytes. J Mol Cell Cardiol. 2015;80:45–55.CrossRefPubMedGoogle Scholar
  20. Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jayasinghe ID, Baddeley D, Kong CH, Wehrens XH, Cannell MB, Soeller C. Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J. 2012;102:L19–21.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Johnson E, Seiradake E, Jones EY, Davis I, Grunewald K, Kaufmann R. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins. Sci Rep. 2015;5:9583.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, et al. Nanoscale architecture of integrin-based cell adhesions. Nature. 2010;468:580–4.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kube S, Hersch N, Naumovska E, Gensch T, Hendriks J, Franzen A, et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir. 2017;33(4):1051–9.CrossRefPubMedGoogle Scholar
  26. Langhorst MF, Schaffer J, Goetze B. Structure brings clarity: structured illumination microscopy in cell biology. Biotechnol J. 2009;4:858–65.CrossRefPubMedGoogle Scholar
  27. Leo-Macias A, Agullo-Pascual E, Sanchez-Alonso JL, Keegan S, Lin X, Arcos T, et al. Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nat Commun. 2016;7:10342.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Loschberger A, Franke C, Krohne G, van de Linde S, Sauer M. Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci. 2014;127:4351–5.CrossRefPubMedGoogle Scholar
  29. Lukyanenko YO, Younes A, Lyashkov AE, Tarasov KV, Riordon DR, Lee J, et al. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function. J Mol Cell Cardiol. 2016;98:73–82.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Macquaide N, Tuan HT, Hotta J, Sempels W, Lenaerts I, Holemans P, et al. Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release. Cardiovasc Res. 2015;108:387–98.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Malkusch S, Heilemann M. Extracting quantitative information from single-molecule super-resolution imaging data with LAMA—LocAlization microscopy Analyzer. Sci Rep. 2016;6:34486.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Munro ML, Jayasinghe ID, Wang Q, Quick A, Wang W, Baddeley D, et al. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci. 2016;129:4388–98.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 2015;12:215–218, 214 p following 218Google Scholar
  34. Proppert S, Wolter S, Holm T, Klein T, van de Linde S, Sauer M. Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging. Opt Express. 2014;22:10304–16.CrossRefPubMedGoogle Scholar
  35. Reid DA, Rothenberg E (2015) Single-molecule fluorescence imaging techniques. In: Encyclopedia of analytical chemistry, pp 1–20.Google Scholar
  36. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods. 2015;12:717–24.CrossRefPubMedGoogle Scholar
  38. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A. 2009;106:3125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science. 2013;341:655–8.CrossRefPubMedGoogle Scholar
  40. Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature. 2016;536:210–4.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Te Riele AS, Agullo-Pascual E, James CA, Leo-Macias A, Cerrone M, Zhang M, et al. Multilevel analyses of SCN5A mutations in arrhythmogenic right ventricular dysplasia/cardiomyopathy suggest non-canonical mechanisms for disease pathogenesis. Cardiovasc Res. 2017;113:102–11.CrossRefGoogle Scholar
  42. Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, et al. Labeling proteins inside living cells using external fluorophores for microscopy. elife. 2016;5Google Scholar
  43. Veeraraghavan R, Lin J, Hoeker GS, Keener JP, Gourdie RG, Poelzing S. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflugers Archiv Eur J Physiol. 2015;467:2093–105.CrossRefGoogle Scholar
  44. Veeraraghavan R, Lin J, Keener JP, Gourdie R, Poelzing S. Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study. Pflugers Archiv Eur J Physiol. 2016;468:1651–61.CrossRefGoogle Scholar
  45. Wagner E, Lauterbach MA, Kohl T, Westphal V, Williams GS, Steinbrecher JH, et al. Stimulated emission depletion live-cell super-resolution imaging shows proliferative remodeling of T-tubule membrane structures after myocardial infarction. Circ Res. 2012;111:402–14.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang W, Landstrom AP, Wang Q, Munro ML, Beavers D, Ackerman MJ, et al. Reduced junctional Na+/Ca2+-exchanger activity contributes to sarcoplasmic reticulum Ca2+ leak in junctophilin-2-deficient mice. Am J Phys Heart Circ Phys. 2014;307:H1317–26.Google Scholar
  47. Whelan DR, Bell TD. Super-resolution single-molecule localization microscopy: tricks of the trade. J Phys Chem Lett. 2015;6:374–82.CrossRefPubMedGoogle Scholar
  48. Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B, et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science. 2014;344:1023–8.CrossRefPubMedGoogle Scholar
  49. Wong J, Baddeley D, Bushong EA, Yu Z, Ellisman MH, Hoshijima M, et al. Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of T-tubules near junctions. Biophys J. 2013;104:L22–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science. 2013;339:452–6.CrossRefPubMedGoogle Scholar
  51. Yin Y, Rothenberg E. Probing the spatial organization of molecular complexes using triple-pair-correlation. Sci Rep. 2016;6:30819.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang Z, Nishimura Y, Kanchanawong P. Extracting microtubule networks from superresolution single-molecule localization microscopy data. Mol Biol Cell. 2017;28:333–45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Esperanza Agullo-Pascual
    • 1
  • Alejandra Leo-Macias
    • 1
  • Donna R. Whelan
    • 2
  • Mario Delmar
    • 1
  • Eli Rothenberg
    • 2
  1. 1.The Leon H Charney Division of CardiologyNew York University School of MedicineNew YorkUSA
  2. 2.Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUSA

Personalised recommendations