Advertisement

Atrial Fibrillation

  • Ann-Kathrin Rahm
  • Hugo A. Katus
  • Dierk Thomas
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Atrial fibrillation (AF) is the most common arrhythmia in clinical routine. AF is related to significant morbidity and mortality caused by thromboembolism, tachycardia-induced cardiomyopathy, and heart failure. The pathophysiological mechanisms leading to AF initiation and progression are complex.

Pedigrees of AF families enabled the identification of genetic factors predisposing to AF. In genotyped families, AF patients carry rare genetic variants in genes associated with ion channels, calcium handling protein, or genes related to fibrosis, conduction system disease, and inflammatory processes. Furthermore, common genetic variants have been linked directly to AF. However, in most cases the molecular mechanisms by which single nucleotide polymorphisms (SNPs) enhance AF susceptibility remain to be identified.

Optimized understanding of the molecular basis and genetics of AF will help to optimize risk stratification and therapeutic management of AF patients and lead to new therapeutic approaches in treating this epidemic disease.

Keywords

Arrhythmogenesis Atrial fibrillation Electrophysiology Genetics Ion channel 

Notes

Compliance with Ethical Standards

Funding

This work was supported in part by grants from the University of Heidelberg, Faculty of Medicine (Physician Scientist Scholarship to A.K.R.) and the German Cardiac Society (DGK Research Scholarship to A.K.R,), from the German Cardiac Society and the Hengstberger Foundation (Klaus-Georg and Sigrid Hengstberger Scholarship to D.T.), from the German Heart Foundation/German Foundation of Heart Research (F/08/14 to D.T.), from the Joachim Siebenreicher Foundation (to D.T.), and from the Ministry of Science, Research, and the Arts, Baden-Wuerttemberg (Sonderlinie Medizin to D.T.).

Conflict of Interest

D.T. reports receiving lecture fees/honoraria from Bayer Vital, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, Medtronic, Pfizer Pharma, Sanofi-Aventis, St. Jude Medical, and ZOLL CMS, and research grant support from Daiichi Sankyo. H.A.K. and D.T. filed a patent application for the use of K2P potassium channels for altering cardiac electrophysiology.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies. Europace. 2011;13(8):1077–109.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aistrup GL, Cokic I, Ng J, Gordon D, Koduri H, Browne S, Arapi D, Segon Y, Goldstein J, Angulo A, Wasserstrom JA, Goldberger JJ, Kadish AH, Arora R. Targeted nonviral gene-based inhibition of Gα(i/o)-mediated vagal signaling in the posterior left atrium decreases vagal-induced atrial fibrillation. Heart Rhythm. 2011;8(11):1722–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amin AS, Boink GJ, Atrafi F, Spanjaart AM, Asghari-Roodsari A, Molenaar RJ, Ruijter JM, Wilde AA, Tan HL. Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome. Europace. 2011;13(7):968–75.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Amit G, Kikuchi K, Greener ID, Yang L, Novack V, Donahue JK. Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation. 2010;121(21):2263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andersson T, Magnuson A, Bryngelsson I-L, Frobert O, Henriksson KM, Edvardsson N, Poci D. All-cause mortality in 272,186 patients hospitalized with incident atrial fibrillation 1995-2008 a Swedish nationwide long-term case-control study. Eur Heart J. 2013;34(14):1061–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y, Guerchicoff A, Pfeiffer R, Oliva A, Wollnik B, Gelber P, Bonaros EP, Burashnikov E, Wu Y, Sargent JD, Schickel S, Oberheiden R, Bhatia A, Hsu L-F, Haïssaguerre M, Schimpf R, Borggrefe M, Wolpert C. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, Stefansson K. Familial aggregation of atrial fibrillation in Iceland. Eur Heart J. 2006;27(6):708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arora R. Gene therapy for atrial fibrillation in heart failure. Clin Pharmacol Ther. 2017;102(2):200–2.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167(5):1807–24.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bartos DC, Duchatelet S, Burgess DE, Klug D, Denjoy I, Peat R, Lupoglazoff JM, Fressart V, Berthet M, Ackerman MJ, January CT, Guicheney P, Delisle BP. R231C mutation in KCNQ1 causes long QT syndrome type 1 and familial atrial fibrillation. Heart Rhythm. 2011;8(1):48–55.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bartos DC, Anderson JB, Bastiaenen R, Johnson JN, Gollob MH, Tester DJ, Burgess DE, Homfray T, Behr ER, Ackerman MJ, Guicheney P, Delisle BP. A KCNQ1 mutation causes a high penetrance for familial atrial fibrillation. J Cardiovasc Electrophysiol. 2013;24(5):562–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beavers DL, Wang W, Ather S, Voigt N, Garbino A, Dixit SS, Landstrom AP, Li N, Wang Q, Olivotto I, Dobrev D, Ackerman MJ, Wehrens XH. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol. 2013;62(21):2010–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM, Baró I, Wilde AA. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109(20):2394–7.PubMedCrossRefGoogle Scholar
  14. Benito B, Brugada R, Perich RM, Lizotte E, Cinca J, Mont L, Berruezo A, Tolosana JM, Freixa X, Brugada P, Brugada J. A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation. Heart Rhythm. 2008;5(10):1434–40.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death. The Framingham heart study. Circulation. 1998;98(10):946–52.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, Schnabel RB, Bis JC, Boerwinkle E, Sinner MF, Dehghan A, Lubitz SA, D’Agostino RB, Lumley T, Ehret GB, Heeringa J, Aspelund T, Newton-Cheh C, Larson MG, Marciante KD, Soliman EZ, Rivadeneira F, Wang TJ, Eiríksdottir G, Levy D, Psaty BM, Li M, Chamberlain AM, Hofman A, Vasan RS, Harris TB, Rotter JI, Kao WH, Agarwal SK, Stricker BH, Wang K, Launer LJ, Smith NL, Chakravarti A, Uitterlinden AG, Wolf PA, Sotoodehnia N, Köttgen A, van Duijn CM, Meitinger T, Mueller M, Perz S, Steinbeck G, Wichmann H-E, Lunetta KL, Heckbert SR, Gudnason V, Alonso A, Kääb S, Ellinor PT, Witteman JC. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet. 2009;41(8):879–81.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, Postma AV, van Langen I, Mannens MM, Wilde AA. Expanding spectrum of human RYR2-related disease new electrocardiographic, structural, and genetic features. Circulation. 2007;116(14):1569–76.PubMedCrossRefGoogle Scholar
  18. Bikou O, Thomas D, Trappe K, Lugenbiel P, Kelemen K, Koch M, Soucek R, Voss F, Becker R, Katus HA, Bauer A. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc Res. 2011;92(2):218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bjorck S, Palaszewski B, Friberg L, Bergfeldt L. Atrial fibrillation, stroke risk, and warfarin therapy revisited a population-based study. Stroke. 2013;44(11):3103–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Borggrefe M, Wolpert C, Antzelevitch C, Veltmann C, Giustetto C, Gaita F, Schimpf R. Short QT syndrome. Genotype-phenotype correlations. J Electrocardiol. 2005;38(4 Suppl):75–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M, Menendez TM, Brugada J, Pollevick GD, Wolpert C, Burashnikov E, Matsuo K, Wu YS, Guerchicoff A, Bianchi F, Giustetto C, Schimpf R, Brugada P, Antzelevitch C. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109(1):30–5.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Campuzano O, Brugada R. Genetics of familial atrial fibrillation. Europace. 2009;11(10):1267–71.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cerrone M, Colombi B, Santoro M, di Barletta MR, Scelsi M, Villani L, Napolitano C, Priori SG. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ Res. 2005;96:e77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chang SH, Chang SN, Hwang JJ, Chiang FT, Tseng CD, Lee JK, Lai LP, Lin JL, Wu CK, Tsai CT. Significant association of rs13376333 in KCNN3 on chromosome 1q21 with atrial fibrillation in a Taiwanese population. Circ J. 2012;76(1):184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, Schotten U, Anderson ME, Valderrábano M, Dobrev D, Wehrens XH. Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 2009;119(7):1940–51.PubMedPubMedCentralGoogle Scholar
  26. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299(5604):251–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chinchilla A, Daimi H, Lozano-Velasco E, Dominguez JN, Caballero R, Delpón E, Tamargo J, Cinca J, Hove-Madsen L, Aranega AE, Franco D. PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circ Cardiovasc Genet. 2011;4(3):269–79.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chorin E, Taub R, Medina A, Flint N, Viskin S, Benhorin J. Long-term flecainide therapy in type 3 long QT syndrome. Europace. 2018;20(2):370–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Christophersen IE, Ravn LS, Budtz-Joergensen E, Skytthe A, Haunsoe S, Svendsen JH, Christensen K. Familial aggregation of atrial fibrillation a study in Danish twins. Circ Arrhythm Electrophysiol. 2009;2(4):378–83.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Christophersen IE, Olesen MS, Liang B, Andersen MN, Larsen AP, Nielsen JB, Haunso S, Olesen S-P, Tveit A, Svendsen JH, Schmitt N. Genetic variation in KCNA5: impact on the atrial-specific potassium current IKur in patients with lone atrial fibrillation. Eur Heart J. 2013;34(20):1517–25.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, Lin H, Arking DE, Smith AV, Albert CM, Chaffin M, Tucker NR, Li M, Klarin D, Bihlmeyer NA, Low S-K, Weeke PE, Müller-Nurasyid M, Smith JG, Brody JA, Niemeijer MN, Dörr M, Trompet S, Huffman J, Gustafsson S, Schurmann C, Kleber ME, Lyytikäinen L-P, Seppälä I, Malik R, Horimoto AR, Perez M, Sinisalo J, Aeschbacher S, Thériault S, Yao J, Radmanesh F, Weiss S, Teumer A, Choi SH, Weng L-C, Clauss S, Deo R, Rader DJ, Shah SH, Sun A, Hopewell JC, Debette S, Chauhan G, Yang Q, Worrall BB, Paré G, Kamatani Y, Hagemeijer YP, Verweij N, Siland JE, Kubo M, Smith JD, van Wagoner DR, Bis JC, Perz S, Psaty BM, Ridker PM, Magnani JW, Harris TB, Launer LJ, Shoemaker MB, Padmanabhan S, Haessler J, Bartz TM, Waldenberger M, Lichtner P, Arendt M, Krieger JE, Kähönen M, Risch L, Mansur AJ, Peters A, Smith BH, Lind L, Scott SA, Lu Y, Bottinger EB, Hernesniemi J, Lindgren CM, Wong JA, Huang J, Eskola M, Morris AP, Ford I, Reiner AP, Delgado G, Chen LY, Y-DI C, Sandhu RK, Li M, Boerwinkle E, Eisele L, Lannfelt L, Rost N, Anderson CD, Taylor KD, Campbell A, Magnusson PK, Porteous D, Hocking LJ, Vlachopoulou E, Pedersen NL, Nikus K, Orho-Melander M, Hamsten A, Heeringa J, Denny JC, Kriebel J, Darbar D, Newton-Cheh C, Shaffer C, Macfarlane PW, Heilmann-Heimbach S, Almgren P, Huang PL, Sotoodehnia N, Soliman EZ, Uitterlinden AG, Hofman A, Franco OH, Völker U, Jöckel K-H, Sinner MF, Lin HJ, Guo X, Dichgans M, Ingelsson E, Kooperberg C, Melander O, Loos RJ, Laurikka J, Conen D, Rosand J, van der Harst P, Lokki ML, Kathiresan S, Pereira A, Jukema JW, Hayward C, Rotter JI, März W, Lehtimäki T, Stricker BH, Chung MK, Felix SB, Gudnason V, Alonso A, Roden DM, Kääb S, Chasman DI, Heckbert SR, Benjamin EJ, Tanaka T, Lunetta KL, Lubitz SA, Ellinor PT. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49(6):946–52.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH, JR ZZJ, Forouzanfar MH, Naghavi M, Mensah GA, Ezzati M, Murray CJ. Worldwide epidemiology of atrial fibrillation a global burden of disease 2010 study. Circulation. 2014;129(8):837–47.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Das S, Makino S, Melman YF, Shea MA, Goyal SB, Rosenzweig A, CA MR, Ellinor PT. Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation. Heart Rhythm. 2009;6(8):1146–53.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Delaney JT, Muhammad R, Blair MA, Kor K, Fish FA, Roden DM, Darbar D. A KCNJ8 mutation associated with early repolarization and atrial fibrillation. Europace. 2012;14(10):1428–32.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dobrev D, Ravens U. Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol. 2003;98(3):137–48.PubMedPubMedCentralGoogle Scholar
  38. Dobrev D, Graf E, Wettwer E, Himmel HM, Hála O, Doerfel C, Christ T, Schüler S, Ravens U. Molecular basis of downregulation of G-protein-coupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation. Circulation. 2001;104(21):2551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens U. The G protein-gated potassium current IK,ACh is constitutively active in patients with chronic atrial fibrillation. Circulation. 2005;112(24):3697–706.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Donahue JK. Biological therapies for atrial fibrillation ready for prime time? J Cardiovasc Pharmacol. 2016;67(1):19–25.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duhme N, Schweizer PA, Thomas D, Becker R, Schröter J, Barends TR, Schlichting I, Draguhn A, Bruehl C, Katus HA, Koenen M. Altered HCN4 channel C-linker interaction is associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. Eur Heart J. 2013;34(35):2768–75.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Eckardt L, Kirchhof P, Loh P, Schulze-Bahr E, Johna R, Wichter T, Breithardt G, Haverkamp W, Borggrefe M. Brugada syndrome and supraventricular tachyarrhythmias a novel association? J Cardiovasc Electrophysiol. 2001;12(6):680–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. El Yaman M, Perry J, Makielski JC, Ackerman MJ. Suppression of atrial fibrillation with mexiletine pharmacotherapy in a young woman with type 1 long QT syndrome. Heart Rhythm. 2008;5(3):472–4.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Ellinor PT, MacRae CA. Ion channel mutations in AF signal or noise? Heart Rhythm. 2008;5(3):436–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ellinor PT, Yoerger DM, Ruskin JN, MacRae CA. Familial aggregation in lone atrial fibrillation. Hum Genet. 2005;118(2):179–84.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF, de BPI, Mueller M, Lubitz SA, Fox E, Darbar D, Smith NL, Smith JD, Schnabel RB, Soliman EZ, Rice KM, van Wagoner DR, Beckmann B-M, van Noord C, Wang K, Ehret GB, Rotter JI, Hazen SL, Steinbeck G, Smith AV, Launer LJ, Harris TB, Makino S, Nelis M, Milan DJ, Perz S, Esko T, Köttgen A, Moebus S, Newton-Cheh C, Li M, Möhlenkamp S, Wang TJ, Kao WH, Vasan RS, Nöthen MM, MacRae CA, Stricker BH, Hofman A, Uitterlinden AG, Levy D, Boerwinkle E, Metspalu A, Topol EJ, Chakravarti A, Gudnason V, Psaty BM, Roden DM, Meitinger T, Wichmann H-E, Witteman JC, Barnard J, Arking DE, Benjamin EJ, Heckbert SR, Kääb S. Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet. 2010;42(3):240–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, Arking DE, Müller-Nurasyid M, Krijthe BP, Lubitz SA, Bis JC, Chung MK, Dörr M, Ozaki K, Roberts JD, Smith JG, Pfeufer A, Sinner MF, Lohman K, Ding J, Smith NL, Smith JD, Rienstra M, Rice KM, van Wagoner DR, Magnani JW, Wakili R, Clauss S, Rotter JI, Steinbeck G, Launer LJ, Davies RW, Borkovich M, Harris TB, Lin H, Völker U, Völzke H, Milan DJ, Hofman A, Boerwinkle E, Chen LY, Soliman EZ, Voight BF, Li G, Chakravarti A, Kubo M, Tedrow UB, Rose LM, Ridker PM, Conen D, Tsunoda T, Furukawa T, Sotoodehnia N, Xu S, Kamatani N, Levy D, Nakamura Y, Parvez B, Mahida S, Furie KL, Rosand J, Muhammad R, Psaty BM, Meitinger T, Perz S, Wichmann H-E, Witteman JC, Kao WH, Kathiresan S, Roden DM, Uitterlinden AG, Rivadeneira F, McKnight B, Sjögren M, Newman AB, Liu Y, Gollob MH, Melander O, Tanaka T, Stricker BH, Felix SB, Alonso A, Darbar D, Barnard J, Chasman DI, Heckbert SR, Benjamin EJ, Gudnason V, Kääb S. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44(6):670–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Enriquez A, Antzelevitch C, Bismah V, Baranchuk A. Atrial fibrillation in inherited cardiac channelopathies from mechanisms to management. Heart Rhythm. 2016;13(9):1878–84.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Everett BM, Cook NR, Conen D, Chasman DI, Ridker PM, Albert CM. Novel genetic markers improve measures of atrial fibrillation risk prediction. Eur Heart J. 2013;34(29):2243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. Dev Biol. 2001;229(2):287–306.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fox CS, Parise H, D’Agostino RB, SR L-JDM, Vasan RS, Wang TJ, Levy D, Wolf PA, Benjamin EJ. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291(23):2851–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Franco D, Campione M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003;13(4):157–63.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R, Grossi S, Richiardi E, Borggrefe M. Short QT syndrome a familial cause of sudden death. Circulation. 2003;108(8):965–70.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calò L, Brugada R, Antzelevitch C, Borggrefe M, Wolpert C. Short QT syndrome pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Girmatsion Z, Biliczki P, Bonauer A, Wimmer-Greinecker G, Scherer M, Moritz A, Bukowska A, Goette A, Nattel S, Hohnloser SH, Ehrlich JR. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm. 2009;6(12):1802–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P, Leone G, Maury P, Anttonen O, Haissaguerre M, Gaita F. Short QT syndrome clinical findings and diagnostic-therapeutic implications. Eur Heart J. 2006;27(20):2440–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Giustetto C, Cerrato N, Gribaudo E, Scrocco C, Castagno D, Richiardi E, Giachino D, Bianchi F, Barbonaglia L, Ferraro A. Atrial fibrillation in a large population with Brugada electrocardiographic pattern prevalence, management, and correlation with prognosis. Heart Rhythm. 2014;11(2):259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA. 2001;285(18):2370–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Goddard CA, Ghais NS, Zhang Y, Williams AJ, Colledge WH, Grace AA, Huang CL. Physiological consequences of the P2328S mutation in the ryanodine receptor (RyR2) gene in genetically modified murine hearts. Acta Physiol (Oxf). 2008;194(2):123–40.CrossRefGoogle Scholar
  60. Gollob MH, Jones DL, Krahn AD, Danis L, Gong XQ, Shao Q, Liu X, Veinot JP, Tang AS, Stewart AF, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D. Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation the greater cape floristic region. N Engl J Med. 2006;354(25):2677–88.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Grond M, Jauss M, Hamann G, Stark E, Veltkamp R, Nabavi D, Horn M, Weimar C, Kohrmann M, Wachter R, Rosin L, Kirchhof P. Improved detection of silent atrial fibrillation using 72-hour Holter ECG in patients with ischemic stroke a prospective multicenter cohort study. Stroke. 2013;44(12):3357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Grunnet M, Bentzen BH, Sorensen US, Diness JG. Cardiac ion channels and mechanisms for protection against atrial fibrillation. Rev Physiol Biochem Pharmacol. 2012;162:1–58.PubMedPubMedCentralGoogle Scholar
  63. Gu JY, Xu JH, Yu H, Yang YQ. Novel GATA5 loss-of-function mutations underlie familial atrial fibrillation. Clinics. 2012;67(12):1393–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, Jonasdottir A, Baker A, Thorleifsson G, Kristjansson K, Palsson A, Blondal T, Sulem P, Backman VM, Hardarson GA, Palsdottir E, Helgason A, Sigurjonsdottir R, Sverrisson JT, Kostulas K, Ng MC, Baum L, So WY, Wong KS, Chan JC, Furie KL, Greenberg SM, Sale M, Kelly P, MacRae CA, Smith EE, Rosand J, Hillert J, Ma RC, Ellinor PT, Thorgeirsson G, Gulcher JR, Kong A, Thorsteinsdottir U, Stefansson K. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgeirsson G, Gulcher J, Mathiesen EB, Njølstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Kucera G, Stubblefield T, Carter S, Roden D, Ng MC, Baum L, So WY, Wong KS, Chan JC, Gieger C, Wichmann H-E, Gschwendtner A, Dichgans M, Kuhlenbäumer G, Berger K, Ringelstein EB, Bevan S, Markus HS, Kostulas K, Hillert J, Sveinbjörnsdóttir S, Valdimarsson EM, Løchen M-L, Ma RC, Darbar D, Kong A, Arnar DO, Thorsteinsdottir U, Stefansson K. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009;41(8):876–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Haim M, Hoshen M, Reges O, Rabi Y, Balicer R, Leibowitz M. Prospective national study of the prevalence, incidence, management and outcome of a large contemporary cohort of patients with incident non-valvular atrial fibrillation. J Am Heart Assoc. 2015;4(1):e001486.  https://doi.org/10.1161/JAHA.114.001486.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Harrell DT, Ashihara T, Ishikawa T, Tominaga I, Mazzanti A, Takahashi K, Oginosawa Y, Abe H, Maemura K, Sumitomo N, Uno K, Takano M, Priori SG, Makita N. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol. 2015;190:393–402.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hasegawa K, Ohno S, Ashihara T, Itoh H, Ding WG, Toyoda F, Makiyama T, Aoki H, Nakamura Y, Delisle BP, Matsuura H, Horie M. A novel KCNQ1 missense mutation identified in a patient with juvenile-onset atrial fibrillation causes constitutively open IKs channels. Heart Rhythm. 2014;11(1):67–75.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hattori T, Makiyama T, Akao M, Ehara E, Ohno S, Iguchi M, Nishio Y, Sasaki K, Itoh H, Yokode M, Kita T, Horie M, Kimura T. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc Res. 2012;93(4):666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hayashi K, Konno T, Tada H, Tani S, Liu L, Fujino N, Nohara A, Hodatsu A, Tsuda T, Tanaka Y, Kawashiri MA, Ino H, Makita N, Yamagishi M. Functional characterization of rare variants implicated in susceptibility to lone atrial fibrillation study of thyroid dysfunction in diabetic patients. Circ Arrhythm Electrophysiol. 2015;8(5):1095–104.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114(9):1483–99.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Henriksson KM, Farahmand B, Asberg S, Edvardsson N, Terent A. Comparison of cardiovascular risk factors and survival in patients with ischemic or hemorrhagic stroke. Int J Stroke. 2012;7(4):276–81.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P, Sachse F, Sanguinetti MC, Brugada R. De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res. 2005;68(3):433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Huang RT, Xue S, Xu YJ, Zhou M, Yang YQ. A novel NKX2.5 loss-of-function mutation responsible for familial atrial fibrillation. Int J Mol Med. 2013;31(5):1119–26.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hucker WJ, Saini H, Lubitz SA, Ellinor PT. Atrial fibrillation genetics is there a practical clinical value now or in the future? Can J Cardiol. 2016;32(11):1300–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hucker WJ, Hanley A, Ellinor PT. Improving atrial fibrillation therapy is there a gene for that? J Am Coll Cardiol. 2017;69(16):2088–95.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Igarashi T, Finet JE, Takeuchi A, Fujino Y, Strom M, Greener ID, Rosenbaum DS, Donahue JK. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation. 2012;125(2):216–25.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jabbari J, Olesen MS, Holst AG, Nielsen JB, Haunso S, Svendsen JH. Common polymorphisms in KCNJ5 [corrected] are associated with early-onset lone atrial fibrillation in Caucasians. Cardiology. 2011;118(2):116–20.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Jabbari J, Olesen MS, Yuan L, Nielsen JB, Liang B, Macri V, Christophersen IE, Nielsen N, Sajadieh A, Ellinor PT, Grunnet M, Haunsø S, Holst AG, Svendsen JH, Jespersen T. Common and rare variants in SCN10A modulate the risk of atrial fibrillation. Circ Cardiovasc Genet. 2015;8(1):64–73.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jia W, Qi X, Li Q. Association between Rs3807989 polymorphism in Caveolin-1 (CAV1) gene and Atrial fibrillation a meta-analysis. Med Sci Monit. 2016;22:3961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jiang JQ, Shen FF, Fang WY, Liu X, Yang YQ. Novel GATA4 mutations in lone atrial fibrillation. Int J Mol Med. 2011;28(6):1025–32.PubMedPubMedCentralGoogle Scholar
  83. Jiang YF, Chen M, Zhang NN, Yang HJ, Xu LB, Rui Q, Sun SJ, Yao JL, Zhou YF. Association between KCNE1 G38S gene polymorphism and risk of atrial fibrillation a PRISMA-compliant meta-analysis. Medicine. 2017;96(25):e7253.  https://doi.org/10.1097/MD.0000000000007253.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Johnson JN, Tester DJ, Perry J, Salisbury BA, Reed CR, Ackerman MJ. Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. Heart Rhythm. 2008;5(5):704–9.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kannel WB, Benjamin EJ. Status of the epidemiology of atrial fibrillation. Med Clin North Am. 2008;92(1):17–40, ix.Google Scholar
  86. Kannankeril PJ, Mitchell BM, Goonasekera SA, Chelu MG, Zhang W, Sood S, Kearney DL, Danila CI, De Biasi M, Wehrens XH, Pautler RG, Roden DM, Taffet GE, Dirksen RT, Anderson ME, Hamilton SL. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc Natl Acad Sci U S A. 2006;103:12179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Karst ML, Herron KJ, Olson TM. X-linked nonsyndromic sinus node dysfunction and atrial fibrillation caused by emerin mutation. J Cardiovasc Electrophysiol. 2008;19(5):510–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kaufman ES. Mechanisms and clinical management of inherited channelopathies long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome. Heart Rhythm. 2009;6(8 Suppl):51–5.CrossRefGoogle Scholar
  89. Ki CS, Jung CL, Kim HJ, Baek KH, Park SJ, On YK, Kim KS, Noh SJ, Youm JB, Kim JS, Cho H. A KCNQ1 mutation causes age-dependant bradycardia and persistent atrial fibrillation. Pflugers Archiv: European Journal of Physiology. 2014;466(3):529–40.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kiliszek M, Kozluk E, Franaszczyk M, Lodzinski P, Piatkowska A, Ploski R, Opolski G. The 4q25, 1q21, and 16q22 polymorphisms and recurrence of atrial fibrillation after pulmonary vein isolation. Arch Med Sci. 2016;12(1):38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kirchhof P, Fabritz L. Of hammers and screws renin-angiotensin-aldosterone system inhibition to prevent atrial fibrillation in patients with hypertension. Eur Heart J. 2014;35(18):1169–71.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Kirchhof P, Eckardt L, Franz MR, Mönnig G, Loh P, Wedekind H, Schulze-Bahr E, Breithardt G, Haverkamp W. Prolonged atrial action potential durations and polymorphic atrial Tachyarrhythmias in patients with long QT syndrome. J Cardiovasc Electrophysiol. 2003;14(10):1027–33.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kirchhof P, Sipido KR, Cowie MR, Eschenhagen T, Fox KA, Katus H, Schroeder S, Schunkert H, Priori S. The continuum of personalized cardiovascular medicine a position paper of the European Society of Cardiology. Eur Heart J. 2014;35(46):3250–7.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, van Putte B, Vardas P, Agewall S, Camm J, Baron Esquivias G, Budts W, Carerj S, Casselman F, Coca A, de CR, Deftereos S, Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M, Hohnloser SH, Kolh P, Lip GY, Manolis A, McMurray J, Ponikowski P, Rosenhek R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, van Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Kishore A, Vail A, Majid A, Dawson J, Lees KR, Tyrrell PJ, Smith CJ. Detection of atrial fibrillation after ischemic stroke or transient ischemic attack a systematic review and meta-analysis. Stroke. 2014;45(2):520–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE. The natural history of atrial fibrillation incidence, risk factors, and prognosis in the Manitoba follow-up study. Am J Med. 1995;98(5):476–84.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Krijthe BP, Kunst A, Benjamin EJ, Lip GY, Franco OH, Hofman A, Witteman JC, Stricker BH, Heeringa J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35):2746–51.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kunamalla A, Ng J, Parini V, Yoo S, McGee KA, Tomson TT, Gordon D, Thorp EB, Lomasney J, Zhang Q, Shah S, Browne S, Knight BP, Passman R, Goldberger JJ, Aistrup G, Arora R. Constitutive expression of a dominant-negative TGF-β type II receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate. Circ Res. 2016;119(1):69–82.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kusano KF, Taniyama M, Nakamura K, Miura D, Banba K, Nagase S, Morita H, Nishii N, Watanabe A, Tada T, Murakami M, Miyaji K, Hiramatsu S, Nakagawa K, Tanaka M, Miura A, Kimura H, Fuke S, Sumita W, Sakuragi S, Urakawa S, Iwasaki J, Ohe T. Atrial fibrillation in patients with Brugada syndrome relationships of gene mutation, electrophysiology, and clinical backgrounds. J Am Coll Cardiol. 2008;51(12):1169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lehnart SE, Mongillo M, Bellinger A, Lindegger N, Chen BX, Hsueh W, Reiken S, Wronska A, Drew LJ, Ward CW, Lederer WJ, Kass RS, Morley G, Marks AR. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest. 2008;118(6):2230–45.PubMedPubMedCentralGoogle Scholar
  101. Lemoine MD, Duverger JE, Naud P, Chartier D, Qi XY, Comtois P, Fabritz L, Kirchhof P, Nattel S. Arrhythmogenic left atrial cellular electrophysiology in a murine genetic long QT syndrome model. Cardiovasc Res. 2011;92(1):67–74.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, Li S, Xia Y, Wu G, Cheng X, Liu H, Wang C, Wang P, Hao J, Ke Y, Zhao Y, Liu M, Zhang R, Gao L, Yu B, Zeng Q, Liao Y, Yang B, Tu X, Wang QK. Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet. 2011;129(3):239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Li J, Liu WD, Yang ZL, Yang YQ. Novel GATA6 loss-of-function mutation responsible for familial atrial fibrillation. Int J Mol Med. 2012;30(4):783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Li RG, Wang Q, Xu YJ, Zhang M, Qu XK, Liu X, Fang WY, Yang YQ. Mutations of the SCN4B-encoded sodium channel β4 subunit in familial atrial fibrillation. Int J Mol Med. 2013;32(1):144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Liang B, Soka M, Christensen AH, Olesen MS, Larsen AP, Knop FK, Wang F, Nielsen JB, Andersen MN, Humphreys D, Mann SA, Huttner IG, Vandenberg JI, Svendsen JH, Haunsø S, Preiss T, Seebohm G, Olesen SP, Schmitt N, Fatkin D. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J Mol Cell Cardiol. 2014;67:69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Lin H, Yin X, Xie Z, Lunetta KL, Lubitz SA, Larson MG, Ko D, Magnani JW, Mendelson MM, Liu C, McManus DD, Levy D, Ellinor PT, Benjamin EJ. Methylome-wide association study of atrial fibrillation in Framingham heart study. Sci Rep. 2017;7:40377.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ling TY, Wang XL, Chai Q, Lau TW, Koestler CM, Park SJ, Daly RC, Greason KL, Jen J, Wu LQ, Shen WF, Shen WK, Cha YM, Lee HC. Regulation of the SK3 channel by MicroRNA-499 - potential role in atrial fibrillation. Heart Rhythm. 2013;10(7):1001–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Liu Y, Ni B, Lin Y, Chen XG, Chen M, Hu Z, Zhang F. The rs3807989 G/a polymorphism in CAV1 is associated with the risk of atrial fibrillation in Chinese Han populations. Pacing Clin Electrophysiol. 2015;38(2):164–70.PubMedCrossRefPubMedCentralGoogle Scholar
  110. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, Viswanathan PC, Pfahnl AE, Shang LL, Madhusudanan M, Baty CJ, Lagana S, Aleong R, Gutmann R, Ackerman MJ, McNamara DM, Weiss R, Dudley SC. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, Villalon ML, Vasan RS, Pencina MJ, Levy D, Larson MG, Ellinor PT, Benjamin EJ. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304(20):2263–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lubitz SA, Lunetta KL, Lin H, Arking DE, Trompet S, Li G, Krijthe BP, Chasman DI, Barnard J, Kleber ME, Dörr M, Ozaki K, Smith AV, Müller-Nurasyid M, Walter S, Agarwal SK, Bis JC, Brody JA, Chen LY, Everett BM, Ford I, Franco OH, Harris TB, Hofman A, Kääb S, Mahida S, Kathiresan S, Kubo M, Launer LJ, Macfarlane PW, Magnani JW, McKnight B, McManus DD, Peters A, Psaty BM, Rose LM, Rotter JI, Silbernagel G, Smith JD, Sotoodehnia N, Stott DJ, Taylor KD, Tomaschitz A, Tsunoda T, Uitterlinden AG, van Wagoner DR, Völker U, Völzke H, Murabito JM, Sinner MF, Gudnason V, Felix SB, März W, Chung M, Albert CM, Stricker BH, Tanaka T, Heckbert SR, Jukema JW, Alonso A, Benjamin EJ, Ellinor PT. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol. 2014;63(12):1200–10.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lubitz SA, Brody JA, Bihlmeyer NA, Roselli C, Weng L-C, Christophersen IE, Alonso A, Boerwinkle E, Gibbs RA, Bis JC, Cupples LA, Mohler PJ, Nickerson DA, Muzny D, Perez MV, Psaty BM, Soliman EZ, Sotoodehnia N, Lunetta KL, Benjamin EJ, Heckbert SR, Arking DE, Ellinor PT, Lin H. Whole exome sequencing in atrial fibrillation. PLoS Genet. 2016;12(9):e1006284.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Lugenbiel P, Thomas D, Kelemen K, Trappe K, Bikou O, Schweizer PA, Voss F, Becker R, Katus HA, Bauer A. Genetic suppression of Gαs protein provides rate control in atrial fibrillation. Basic Res Cardiol. 2012;107(3):265.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Antiarrhythmic gene therapy - will biologics replace catheters, drugs and devices? Eur J Pharmacol. 2016;791:264–73.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lugenbiel P, Wenz F, Syren P, Geschwill P, Govorov K, Seyler C, Frank D, Schweizer PA, Franke J, Weis T, Bruehl C, Schmack B, Ruhparwar A, Karck M, Frey N, Katus HA, Thomas D. TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res Cardiol. 2017;112:8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lundby A, Ravn LS, Svendsen JH, Olesen SP, Schmitt N. KCNQ1 mutation Q147R is associated with atrial fibrillation and prolonged QT interval. Heart Rhythm. 2007;4(12):1532–41.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Lundby A, Ravn LS, Svendsen JH, Hauns S, Olesen SP, Schmitt N. KCNE3 mutation V17M identified in a patient with lone atrial fibrillation. Cell Physiol Biochem. 2008;21(1–3):47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Luo MH, Li YS, Yang KP. Fibrosis of collagen I and remodeling of Connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology. 2007;107(4):248–53.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Ma KJ, Li N, Teng SY, Zhang YH, Sun Q, Gu DF, Pu JL. Modulation of KCNQ1 current by atrial fibrillation-associated KCNE4 (145E/D) gene polymorphism. Chin Med J. 2007;120(2):150–4.PubMedPubMedCentralGoogle Scholar
  121. Ma JF, Yang F, Mahida SN, Zhao L, Chen X, Zhang ML, Sun Z, Yao Y, Zhang YX, Zheng GY, Dong J, Feng MJ, Zhang R, Sun J, Li S, Wang QS, Cao H, Benjamin EJ, Ellinor PT, Li YG, Tian XL. TBX5 mutations contribute to early-onset atrial fibrillation in Chinese and Caucasians. Cardiovasc Res. 2016;109(3):442–50.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Macri V, Mahida SN, Zhang ML, Sinner MF, Dolmatova EV, Tucker NR, McLellan M, Shea MA, Milan DJ, Lunetta KL, Benjamin EJ, Ellinor PT. A novel trafficking-defective HCN4 mutation is associated with early-onset atrial fibrillation. Heart Rhythm. 2014;11(6):1055–62.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mahida S, Lubitz SA, Rienstra M, Milan DJ, Ellinor PT. Monogenic atrial fibrillation as pathophysiological paradigms. Cardiovasc Res. 2011;89(4):692–700.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, Kimura T, Kita T, Horie M. A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation. J Am Coll Cardiol. 2008;52(16):1326–34.PubMedCrossRefPubMedCentralGoogle Scholar
  125. McManus DD, Rienstra M, Benjamin EJ. An update on the prognosis of patients with atrial fibrillation. Circulation. 2012;126(10):e143–6.  https://doi.org/10.1161/CIRCULATIONAHA.112.129759.CrossRefPubMedPubMedCentralGoogle Scholar
  126. Menezes AR, Lavie CJ, de SA, Milani RV, O'Keefe J, DiNicolantonio JJ, Morin DP, Abi-Samra FM. Lifestyle modification in the prevention and treatment of atrial fibrillation. Prog Cardiovasc Dis. 2015;58(2):117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Mohamed U, Napolitano C, Priori SG. Molecular and electrophysiological bases of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2007;18(7):791–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421(6923):634–9.PubMedCrossRefGoogle Scholar
  129. Mommersteeg MT, Brown NA, Prall OW, de G-d VC, Harvey RP, Moorman AF, Christoffels VM. Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res. 2007a;101(9):902–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Mommersteeg MT, Hoogaars WM, Prall OW, de G-d VC, Wiese C, Clout DE, Papaioannou VE, Brown NA, Harvey RP, Moorman AF, Christoffels VM. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007b;100(3):354–62.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Mommersteeg MT, Christoffels VM, Anderson RH, Moorman AF. Atrial fibrillation a developmental point of view. Heart Rhythm. 2009;6(12):1818–24.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, Schwartz PJ, Towbin JA, Vincent GM, Lehmann MH. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation. 1995;92(10):2929–34.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Napolitano C, Priori SG. Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2007;4(5):675–8.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62–73.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Neco P, Torrente AG, Mesirca P, Zorio E, Liu N, Priori SG, Napolitano C, Richard S, Benitah JP, Mangoni ME, Gómez AM. Paradoxical effect of increased diastolic Ca2+ release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circulation. 2012;126(4):392–401.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nielsen JB, Graff C, Pietersen A, Lind B, Struijk JJ, Olesen MS, Haunsø S, Gerds TA, Svendsen JH, Køber L, Holst AG. J-shaped association between QTc interval duration and the risk of atrial fibrillation results from the Copenhagen ECG study. J Am Coll Cardiol. 2013;61(25):2557–64.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Nielsen JB, Bentzen BH, Olesen MS, David JP, Olesen SP, Haunsø S, Svendsen JH, Schmitt N. Gain-of-function mutations in potassium channel subunit KCNE2 associated with early-onset lone atrial fibrillation. Biomark Med. 2014;8(4):557–70.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Olesen MS, Bentzen BH, Nielsen JB, Steffensen AB, David JP, Jabbari J, Jensen HK, Haunso S, Svendsen JH, Schmitt N. Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation. BMC Med Genet. 2012a;13:24.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Olesen MS, Yuan L, Liang B, Holst AG, Nielsen N, Nielsen JB, Hedley PL, Christiansen M, Olesen S-P, Haunsø S, Schmitt N, Jespersen T, Svendsen JH. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ Cardiovasc Genet. 2012b;5(4):450–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunso S, Svendsen JH, Olesen S-P, Schmitt N, Calloe K. A novel KCND3 gain-of-function mutation associated with early-onset of persistent lone atrial fibrillation. Cardiovasc Res. 2013;98(3):488–95.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Olesen MS, Andreasen L, Jabbari J, Refsgaard L, Haunsø S, Olesen S-P, Nielsen JB, Schmitt N, Svendsen JH. Very early-onset lone atrial fibrillation patients have a high prevalence of rare variants in genes previously associated with atrial fibrillation. Heart Rhythm. 2014;11(2):246–51.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Olson TM, Alekseev AE, Liu XK, Park S, Zingman LV, Bienengraeber M, Sattiraju S, Ballew JD, Jahangir A, Terzic A. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15(14):2185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ, Jahangir A, Terzic A. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med. 2007;4(2):110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Otway R, Vandenberg JI, Fatkin D. Atrial fibrillation - a new cardiac channelopathy. Heart Lung Circ. 2007a;16(5):356–60.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Otway R, Vandenberg JI, Guo G, Varghese A, Castro ML, Liu J, Zhao J, Bursill JA, Wyse KR, Crotty H, Baddeley O, Walker B, Kuchar D, Thorburn C, Fatkin D. Stretch-sensitive KCNQ1 mutation a link between genetic and environmental factors in the pathogenesis of atrial fibrillation? J Am Coll Cardiol. 2007b;49(5):578–86.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Oyen N, Ranthe MF, Carstensen L, Boyd HA, Olesen MS, Olesen S-P, Wohlfahrt J, Melbye M. Familial aggregation of lone atrial fibrillation in young persons. J Am Coll Cardiol. 2012;60(10):917–21.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Pappone C, Radinovic A, Manguso F, Vicedomini G, Sala S, Sacco FM, Ciconte G, Saviano M, Ferrari M, Sommariva E, Sacchi S, Ciaccio C, Kallergis EM, Santinelli V. New-onset atrial fibrillation as first clinical manifestation of latent Brugada syndrome prevalence and clinical significance. Eur Heart J. 2009;30(24):2985–92.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Parvez B, Vaglio J, Rowan S, Muhammad R, Kucera G, Stubblefield T, Carter S, Roden D, Darbar D. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. J Am Coll Cardiol. 2012;60(6):539–45.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Pérez-Serra A, Campuzano O, Brugada R. Update about atrial fibrillation genetics. Curr Opin Cardiol. 2017.  https://doi.org/10.1097/HCO.0000000000000387.
  150. Posch MG, Boldt LH, Polotzki M, Richter S, Rolf S, Perrot A, Dietz R, Ozcelik C, Haverkamp W. Mutations in the cardiac transcription factor GATA4 in patients with lone atrial fibrillation. Eur J Med Genet. 2010;53(4):201–3.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Potpara TS, Lip GY. A brief history of ‘lone’ atrial fibrillation from ‘a peculiar pulse irregularity’ to a modern public health concern. Curr Pharm Des. 2015;21(5):679–96.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A, Napolitano C, Anumonwo J, Di Barletta MR, Gudapakkam S, Bosi G, Stramba-Badiale M, Jalife J. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96(7):800–7.PubMedCrossRefGoogle Scholar
  153. Ravn LS, Aizawa Y, Pollevick GD, Hofman-Bang J, Cordeiro JM, Dixen U, Jensen G, Wu Y, Burashnikov E, Haunso S, Guerchicoff A, Hu D, Svendsen JH, Christiansen M, Antzelevitch C. Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm. 2008;5(3):427–35.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Restier L, Cheng L, Sanguinetti MC. Mechanisms by which atrial fibrillation-associated mutations in the S1 domain of KCNQ1 slow deactivation of IKs channels. J Physiol. 2008;586(17):4179–91.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Roberts JD, Marcus GM. The burgeoning field of ablatogenomics. Circ Arrhythm Electrophysiol. 2015;8(2):258–60.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Roberts JD, Marcus GM. Ablatogenomics can genotype guide catheter ablation for cardiac arrhythmias? Pharmacogenomics. 2016.  https://doi.org/10.2217/pgs-2016-0114.
  157. Roberts JD, Hu D, Heckbert SR, Alonso A, Dewland TA, Vittinghoff E, Liu Y, Psaty BM, Olgin JE, Magnani JW, Huntsman S, Burchard EG, Arking DE, Bibbins-Domingo K, Harris TB, Perez MV, Ziv E, Marcus GM. Genetic investigation into the differential risk of atrial fibrillation among black and white individuals. JAMA Cardiol. 2016;1(4):442–50.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rodriguez CJ, Soliman EZ, Alonso A, Swett K, Okin PM, Goff DC, Heckbert SR. Atrial fibrillation incidence and risk factors in relation to race-ethnicity and the population attributable fraction of atrial fibrillation risk factors the multi-ethnic study of atherosclerosis. Ann Epidemiol. 2015;25(2):71–6, 76.e1.  https://doi.org/10.1016/j.annepidem.2014.11.024.CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sanna T, Diener H-C, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F, Lindborg K, Brachmann J. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabó G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczkó I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D. Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation. 2015;132(2):82–92.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz B, Müller FU, Voigt N, Zafeiriou M-P, Ehrlich JR, Tochtermann U, Veres G, Ruhparwar A, Karck M, Katus HA, Thomas D. Stretch-activated two-pore-domain (K2P) potassium channels in the heart. Focus on atrial fibrillation and heart failure. Prog Biophys Mol Biol. 2017;130(Pt B):233–43.  https://doi.org/10.1016/j.pbiomolbio.2017.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, Newton-Cheh C, Lubitz SA, Magnani JW, Ellinor PT, Seshadri S, Wolf PA, Vasan RS, Benjamin EJ, Levy D. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham heart study a cohort study. Lancet. 2015;386(9989):154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation a translational appraisal. Physiol Rev. 2011;91(1):265–325.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Schwartz P, Priori S, Spazzolini G. Genotype-phenotype correlation in the long-QT syndrome. ACC Curr J Rev. 2001;10(3):74.CrossRefGoogle Scholar
  165. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome from genetics to management. Circ Arrhythm Electrophysiol. 2012;5(4):868–77.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Shan J, Xie W, Betzenhauser M, Reiken S, Chen BX, Wronska A, Marks AR. Calcium leak through ryanodine receptors leads to atrial fibrillation in 3 mouse models of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2012;111(6):708–17.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, Bis JC, Lin H, Chung MK, Nielsen JB, Lubitz SA, Krijthe BP, Magnani JW, Ye J, Gollob MH, Tsunoda T, Müller-Nurasyid M, Lichtner P, Peters A, Dolmatova E, Kubo M, Smith JD, Psaty BM, Smith NL, Jukema JW, Chasman DI, Albert CM, Ebana Y, Furukawa T, Macfarlane PW, Harris TB, Darbar D, Dörr M, Holst AG, Svendsen JH, Hofman A, Uitterlinden AG, Gudnason V, Isobe M, Malik R, Dichgans M, Rosand J, van Wagoner DR, Benjamin EJ, Milan DJ, Melander O, Heckbert SR, Ford I, Liu Y, Barnard J, Olesen MS, Stricker BH, Tanaka T, Kääb S, Ellinor PT. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation. 2014;130(15):1225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Soucek R, Thomas D, Kelemen K, Bikou O, Seyler C, Voss F, Becker R, Koenen M, Katus HA, Bauer A. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm. 2012;9(2):265–72.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113(5):359–64.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, Grassi A, de Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–53.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Suetomi T, Yano M, Uchinoumi H, Fukuda M, Hino A, Ono M, Xu X, Tateishi H, Okuda S, Doi M, Kobayashi S, Ikeda Y, Yamamoto T, Ikemoto N, Matsuzaki M. Mutation-linked defective interdomain interactions within ryanodine receptor cause aberrant Ca2+release leading to catecholaminergic polymorphic ventricular tachycardia. Circulation. 2011;124(6):682–94.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tan AY, Zimetbaum P. Atrial fibrillation and atrial fibrosis. J Cardiovasc Pharmacol. 2011;57(6):625–9.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Terrenoire C, Simhaee D, Kass RS. Role of sodium channels in propagation in heart muscle how subtle genetic alterations result in major arrhythmic disorders. J Cardiovasc Electrophysiol. 2007;18(8):900–5.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Trappe K, Thomas D, Bikou O, Kelemen K, Lugenbiel P, Voss F, Becker R, Katus HA, Bauer A. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3A pre-clinical pilot study. Eur Heart J. 2013;34(2):147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  175. Tribulova N, Egan Benova T, Szeiffova Bacova B, Viczenczova C, Barancik M. New aspects of pathogenesis of atrial fibrillation: remodelling of intercalated discs. J Physiol Pharmacol. 2015;66(5):625–34.PubMedPubMedCentralGoogle Scholar
  176. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Juang JMJ, Lin LY, Lai LP, Hwang JJ, Chiang FT, Lin JL. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. J Med Genet. 2015;52(1):28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  177. Tsai CT, Hsieh CS, Chang SN, Chuang EY, Ueng KC, Tsai CF, Lin TH, Wu CK, Lee JK, Lin LY, Wang YC, Yu CC, Lai LP, Tseng CD, Hwang JJ, Chiang FT, Lin JL. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation. Nat Commun. 2016;7:10190.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tucker NR, Ellinor PT. Emerging directions in the genetics of atrial fibrillation. Circ Res. 2014;114(9):1469–82.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tucker NR, Mahida S, Ye J, Abraham EJ, Mina JA, Parsons VA, McLellan MA, Shea MA, Hanley A, Benjamin EJ, Milan DJ, Lin H, Ellinor PT. Gain-of-function mutations in GATA6 lead to atrial fibrillation. Heart Rhythm. 2017;14(2):284–91.PubMedCrossRefPubMedCentralGoogle Scholar
  180. Vlachos K, Letsas KP, Korantzopoulos P, Liu T, Georgopoulos S, Bakalakos A, Karamichalakis N, Xydonas S, Efremidis M, Sideris A. Prediction of atrial fibrillation development and progression current perspectives. World J Cardiol. 2016;8(3):267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Voigt N, Trausch A, Knaut M, Matschke K, Varró A, van Wagoner DR, Nattel S, Ravens U, Dobrev D. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(5):472–80.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121(8):2955–68.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, D’Agostino RB, Murabito JM, Kannel WB, Benjamin EJ. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality the Framingham heart study. Circulation. 2003;107(23):2920–5.PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wang J, Sun YM, Yang YQ. Mutation spectrum of the GATA4 gene in patients with idiopathic atrial fibrillation. Mol Biol Rep. 2012;39(8):8127–35.PubMedCrossRefPubMedCentralGoogle Scholar
  185. Wang XH, Huang CX, Wang Q, Li RG, Xu YJ, Liu X, Fang WY, Yang YQ. A novel GATA5 loss-of-function mutation underlies lone atrial fibrillation. Int J Mol Med. 2013;31(1):43–50.PubMedCrossRefPubMedCentralGoogle Scholar
  186. Wang J, Zhang DF, Sun YM, Li RG, Qiu XB, Qu XK, Liu X, Fang WY, Yang YQ. NKX2-6 mutation predisposes to familial atrial fibrillation. Int J Mol Med. 2014;34(6):1581–90.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Wang C, Wu M, Qian J, Li B, Tu X, Xu C, Li S, Chen S, Zhao Y, Huang Y, Shi L, Cheng X, Liao Y, Chen Q, Xia Y, Yao W, Wu G, Cheng M, Wang QK. Identification of rare variants in TNNI3 with atrial fibrillation in a Chinese GeneID population. Mol Gen Genomics. 2016;291(1):79–92.CrossRefGoogle Scholar
  188. Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott J-J, Demolombe S, Probst V, Anselme F, Escande D, Wiesfeld AC, Pfeufer A, Kääb S, Wichmann HE, Hasdemir C, Aizawa Y, Wilde AA, Roden DM, Bezzina CR. Sodium channel β1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118(6):2260–8.PubMedPubMedCentralGoogle Scholar
  189. Watanabe H, Darbar D, Kaiser DW, Jiramongkolchai K, Chopra S, Donahue BS, Kannankeril PJ, Roden DM. Mutations in sodium channel β1- and β2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2(3):268–75.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Weeke P, Muhammad R, Delaney JT, Shaffer C, Mosley JD, Blair M, Short L, Stubblefield T, Roden DM, Darbar D. Whole-exome sequencing in familial atrial fibrillation. Eur Heart J. 2014;35(36):2477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wei T, Song J, Xu M, Lv L, Liu C, Shen J, Huang Y. NEURL rs6584555 and CAND2 rs4642101 contribute to postoperative atrial fibrillation a prospective study among Chinese population. Oncotarget. 2016;7(27):42617–24.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wettwer E, Hála O, Christ T, Heubach JF, Dobrev D, Knaut M, Varró A, Ravens U. Role of IKur in controlling action potential shape and contractility in the human atrium. Circulation. 2004;110(16):2299–306.PubMedCrossRefPubMedCentralGoogle Scholar
  193. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92(7):1954–68.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke the Framingham study. Stroke. 1991;22(8):983–8.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Workman AJ, Kane KA, Rankin AC. The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res. 2001;52(2):226–35.PubMedCrossRefPubMedCentralGoogle Scholar
  196. Workman AJ, Kane KA, Rankin AC. Cellular bases for human atrial fibrillation. Heart Rhythm. 2008;5(6 Suppl):1–6.CrossRefGoogle Scholar
  197. Wynn GJ, Todd DM, Webber M, Bonnett L, McShane J, Kirchhof P, Gupta D. The European heart rhythm association symptom classification for atrial fibrillation validation and improvement through a simple modification. Europace. 2014;16(7):965–72.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332(4):1012–9.PubMedCrossRefPubMedCentralGoogle Scholar
  199. Xie WH, Chang C, Xu YJ, Li RG, Qu XK, Fang WY, Liu X, Yang YQ. Prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation. Clinics (Sao Paulo, Brazil). 2013;68(6):777–84.CrossRefGoogle Scholar
  200. Yamase Y, Kato K, Horibe H, Ueyama C, Fujimaki T, Oguri M, Arai M, Watanabe S, Murohara T, Yamada Y. Association of genetic variants with atrial fibrillation. Biomedical Reports. 2016;4(2):178–82.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wang R, Ma N, Su X, Niu K, Pei Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J, Chen Y. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75(5):899–905.PubMedPubMedCentralCrossRefGoogle Scholar
  202. Yang Y, Li J, Lin X, Yang Y, Hong K, Wang L, Liu J, Li L, Yan D, Liang D, Xiao J, Jin H, Wu J, Zhang Y, Chen YH. Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation. J Hum Genet. 2009;54(5):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  203. Yang T, Yang P, Roden DM, Darbar D. Novel KCNA5 mutation implicates tyrosine kinase signaling in human atrial fibrillation. Heart Rhythm. 2010;7(9):1246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Yang YQ, Wang MY, Zhang XL, Tan HW, Shi HF, Jiang WF, Wang XH, Fang WY, Liu X. GATA4 loss-of-function mutations in familial atrial fibrillation. Clin Chim Acta. 2011;412(19–20):1825–30.PubMedCrossRefPubMedCentralGoogle Scholar
  205. Yang YQ, Li L, Wang J, Zhang XL, Li RG, Xu YJ, Tan HW, Wang XH, Jiang JQ, Fang WY, Liu X. GATA6 loss-of-function mutation in atrial fibrillation. Eur J Med Genet. 2012a;55(10):520–6.PubMedCrossRefPubMedCentralGoogle Scholar
  206. Yang YQ, Wang J, Wang XH, Wang Q, Tan HW, Zhang M, Shen FF, Jiang JQ, Fang WY, Liu X. Mutational spectrum of the GATA5 gene associated with familial atrial fibrillation. Int J Cardiol. 2012b;157(2):305–7.PubMedCrossRefPubMedCentralGoogle Scholar
  207. Yang YQ, Wang XH, Tan HW, Jiang WF, Fang WY, Liu X. Prevalence and spectrum of GATA6 mutations associated with familial atrial fibrillation. Int J Cardiol. 2012c;155(3):494–6.PubMedCrossRefPubMedCentralGoogle Scholar
  208. Yao JL, Zhou YF, Yang XJ, Qian XD, Jiang WP. KCNN3 SNP rs13376333 on chromosome 1q21 confers increased risk of atrial fibrillation. Int Heart J. 2015;56(5):511–5.PubMedCrossRefPubMedCentralGoogle Scholar
  209. Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT. A functional variant associated with atrial fibrillation regulates PITX2c expression through TFAP2a. Am J Hum Genet. 2016;99(6):1281–91.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Yu H, Xu JH, Song HM, Zhao L, Xu WJ, Wang J, Li RG, Xu L, Jiang WF, Qiu XB, Jiang JQ, Qu XK, Liu X, Fang WY, Jiang JF, Yang YQ. Mutational spectrum of the NKX2-5 gene in patients with lone atrial fibrillation. Int J Med Sci. 2014;11(6):554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Zellerhoff S, Pistulli R, Mönnig G, Hinterseer M, Beckmann BM, Köbe J, Steinbeck G, Kääb S, Haverkamp W, Fabritz L, Gradaus R, Breithardt G, Schulze-Bahr E, Böcker D, Kirchhof P. Atrial arrhythmias in long-QT syndrome under daily life conditions a nested case control study. J Cardiovasc Electrophysiol. 2009;20(4):401–7.PubMedCrossRefPubMedCentralGoogle Scholar
  212. Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L, de La Fuente R, Wang L, Chen Q, Wang QK. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135(6):1017–27.PubMedCrossRefPubMedCentralGoogle Scholar
  213. Zhang C, Yuan GH, Cheng ZF, Xu MW, Hou LF, Wei FP. The single nucleotide polymorphisms of Kir3.4 gene and their correlation with lone paroxysmal atrial fibrillation in Chinese Han population. Heart Lung Circul. 2009;18(4):257–61.CrossRefGoogle Scholar
  214. Zhang Y, Fraser JA, Jeevaratnam K, Hao X, Hothi SS, Grace AA, Lei M, Huang CL. Acute atrial arrhythmogenicity and altered Ca2+ homeostasis in murine RyR2-P2328S hearts. Cardiovasc Res. 2011;89(4):794–804.PubMedCrossRefPubMedCentralGoogle Scholar
  215. Zhao J, Yao H, Li Z, Wang L, Liu G, Wang DW, Wang DW, Liang Z. A novel nonsense mutation in LMNA gene identified by exome sequencing in an atrial fibrillation family. Eur J Med Genet. 2016;59(8):396–400.PubMedCrossRefPubMedCentralGoogle Scholar
  216. Zhao LQ, Zhang GB, Wen ZJ, Huang CK, Wu HQ, Xu J, Qi BZ, Wang ZM, Shi YY, Liu SW. Common variants predict recurrence after nonfamilial atrial fibrillation ablation in Chinese Han population. Int J Cardiol. 2017;227:360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  217. Zhou M, Liao Y, Tu X. The role of transcription factors in atrial fibrillation. J Thorac Dis. 2015;7(2):152–8.PubMedPubMedCentralGoogle Scholar
  218. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology of atrial fibrillation European perspective. Clin Epidemiol. 2014;6:213–20.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ann-Kathrin Rahm
    • 1
    • 2
  • Hugo A. Katus
    • 1
    • 2
  • Dierk Thomas
    • 1
    • 2
  1. 1.Department of Cardiology and HCR (Heidelberg Center for Heart Rhythm Disorders)University Hospital HeidelbergHeidelbergGermany
  2. 2.DZHK (German Centre for Cardiovascular Research)partner site Heidelberg/Mannheim, HeidelbergGermany

Personalised recommendations