Risk Stratification and Prognosis

  • Vivan J. M. Baggen
  • Laurie W. Geenen
  • Jolien W. Roos-HesselinkEmail author
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


In order to adequately manage the rapidly expanding population of patients with adult congenital heart disease (ACHD) and to optimize patient outcomes, accurate prognostication is of paramount importance. A large part of the risk stratification of patients with ACHD is based on the underlying anatomical defect, concomitant lesions, and type of corrective surgery that was performed. In addition, components of the medical history, physical examination, and further diagnostic tests (including ECG, echocardiography, cardiac magnetic resonance imaging, exercise testing, and biomarkers) can provide prognostic information. This chapter provides a narrative review of the factors that have been identified as predictors for heart failure and other late complications in the entire cohort of patients with ACHD and within specific congenital subgroups.


Risk stratification Prognosis Heart failure Survival Event Congenital heart defects Predictors 


  1. 1.
    Moons P, Engelfriet P, Kaemmerer H, et al. Delivery of care for adult patients with congenital heart disease in Europe: results from the Euro Heart Survey. Eur Heart J. 2006;27:1324–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Warnes CA, Liberthson R, Danielson GK, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37(5):1170.CrossRefPubMedGoogle Scholar
  3. 3.
    van der Bom T, Mulder BJ, Meijboom FJ, et al. Contemporary survival of adults with congenital heart disease. Heart. 2015;101:1989–95.CrossRefPubMedGoogle Scholar
  4. 4.
    Diller GP, Kempny A, Alonso-Gonzalez R, et al. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a Large Tertiary Centre. Circulation. 2015;132:2118–25.CrossRefPubMedGoogle Scholar
  5. 5.
    Cuypers JA, Eindhoven JA, Slager MA, et al. The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur Heart J. 2014;35:1666–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Cuypers JA, Opic P, Menting ME, et al. The unnatural history of an atrial septal defect: longitudinal 35 year follow up after surgical closure at young age. Heart. 2013;99:1346–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Menting ME, Cuypers JA, Opic P, et al. The unnatural history of the ventricular septal defect: outcome up to 40 years after surgical closure. J Am Coll Cardiol. 2015;65:1941–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur Heart J. 2005;26:2325–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Junge C, Westhoff-Bleck M, Schoof S, et al. Comparison of late results of arterial switch versus atrial switch (mustard procedure) operation for transposition of the great arteries. Am J Cardiol. 2013;111:1505–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Villafane J, Lantin-Hermoso MR, Bhatt AB, et al. D-transposition of the great arteries: the current era of the arterial switch operation. J Am Coll Cardiol. 2014;64:498–511.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    d'Udekem Y, Iyengar AJ, Galati JC, et al. Redefining expectations of long-term survival after the Fontan procedure: twenty-five years of follow-up from the entire population of Australia and New Zealand. Circulation. 2014;130:S32–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Pundi KN, Johnson JN, Dearani JA, et al. 40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J Am Coll Cardiol. 2015;66:1700–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Van Arsdell GS, Maharaj GS, Tom J, et al. What is the optimal age for repair of tetralogy of Fallot? Circulation. 2000;102:III123–9.PubMedGoogle Scholar
  14. 14.
    Cuypers JA, Menting ME, Konings EE, et al. Unnatural history of tetralogy of Fallot: prospective follow-up of 40 years after surgical correction. Circulation. 2014;130:1944–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Bichell DP. Fourth decade after repair of tetralogy of Fallot: taking aim at moving targets. Circulation. 2014;130:1931–2.CrossRefPubMedGoogle Scholar
  17. 17.
    Diller GP, Giardini A, Dimopoulos K, et al. Predictors of morbidity and mortality in contemporary Fontan patients: results from a multicenter study including cardiopulmonary exercise testing in 321 patients. Eur Heart J. 2010;31:3073–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell. 2004;117:373–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Y, Gramolini AO, Walsh MA, et al. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proc Natl Acad Sci U S A. 2008;105:5519–24.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Granados-Riveron JT, Ghosh TK, Pope M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet. 2010;19:4007–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Egbe A, Lee S, Ho D, Uppu S, Srivastava S. Prevalence of congenital anomalies in newborns with congenital heart disease diagnosis. Ann Pediatr Cardiol. 2014;7:86–91.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pierpont ME, Basson CT, Benson DW Jr, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Baggen VJ, van den Bosch AE, Eindhoven JA, et al. Prognostic value of N-terminal Pro-B-type natriuretic peptide, Troponin-T, and growth-differentiation factor 15 in adult congenital heart disease. Circulation. 2017;135:264–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Kempny A, Hjortshoj CS, Gu H, et al. Predictors of death in contemporary adult patients with Eisenmenger syndrome: a Multicenter study. Circulation. 2017;135:1432–40.CrossRefPubMedGoogle Scholar
  25. 25.
    Rogers RG, Everett BG, Onge JM, Krueger PM. Social, behavioral, and biological factors, and sex differences in mortality. Demography. 2010;47:555–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zomer AC, Ionescu-Ittu R, Vaartjes I, et al. Sex differences in hospital mortality in adults with congenital heart disease: the impact of reproductive health. J Am Coll Cardiol. 2013;62:58–67.CrossRefPubMedGoogle Scholar
  27. 27.
    Kirshbom PM, Myung RJ, Simsic JM, et al. One thousand repeat sternotomies for congenital cardiac surgery: risk factors for reentry injury. Ann Thorac Surg. 2009;88:158–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. 2014;100:247–53.CrossRefPubMedGoogle Scholar
  29. 29.
    Elder RW, McCabe NM, Hebson C, et al. Features of portal hypertension are associated with major adverse events in Fontan patients: the VAST study. Int J Cardiol. 2013;168:3764–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nothroff J, Norozi K, Alpers V, et al. Pacemaker implantation as a risk factor for heart failure in young adults with congenital heart disease. Pacing Clin Electrophysiol. 2006;29:386–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Khairy P, Fernandes SM, Mayer JE Jr, et al. Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation. 2008;117:85–92.CrossRefPubMedGoogle Scholar
  32. 32.
    Budts W, Roos-Hesselink J, Radle-Hurst T, et al. Treatment of heart failure in adult congenital heart disease: a position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2016;37:1419–27.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sabate Rotes A, Eidem BW, Connolly HM, et al. Long-term follow-up after pulmonary valve replacement in repaired tetralogy of Fallot. Am J Cardiol. 2014;114:901–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Driscoll DJ, Offord KP, Feldt RH, Schaff HV, Puga FJ, Danielson GK. Five- to fifteen-year follow-up after Fontan operation. Circulation. 1992;85:469–96.CrossRefPubMedGoogle Scholar
  35. 35.
    Garson A Jr, Nihill MR, McNamara DG, Cooley DA. Status of the adult and adolescent after repair of tetralogy of Fallot. Circulation. 1979;59:1232–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Cullen S, Celermajer DS, Franklin RC, Hallidie-Smith KA, Deanfield JE. Prognostic significance of ventricular arrhythmia after repair of tetralogy of Fallot: a 12-year prospective study. J Am Coll Cardiol. 1994;23(5):1151.CrossRefPubMedGoogle Scholar
  37. 37.
    Muller J, Hager A, Diller GP, et al. Peak oxygen uptake, ventilatory efficiency and QRS-duration predict event free survival in patients late after surgical repair of tetralogy of Fallot. Int J Cardiol. 2015;196:158–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Babu-Narayan SV, Giannakoulas G, Valente AM, Li W, Gatzoulis MA. Imaging of congenital heart disease in adults. Eur Heart J. 2016;37:1182–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Koyak Z, Harris L, de Groot JR, et al. Sudden cardiac death in adult congenital heart disease. Circulation. 2012;126:1944–54.CrossRefPubMedGoogle Scholar
  40. 40.
    Ghai A, Silversides C, Harris L, Webb GD, Siu SC, Therrien J. Left ventricular dysfunction is a risk factor for sudden cardiac death in adults late after repair of tetralogy of Fallot. J Am Coll Cardiol. 2002;40:1675–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Schwerzmann M, Salehian O, Harris L, et al. Ventricular arrhythmias and sudden death in adults after a Mustard operation for transposition of the great arteries. Eur Heart J. 2009;30:1873–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Diller GP, Kempny A, Liodakis E, et al. Left ventricular longitudinal function predicts life-threatening ventricular arrhythmia and death in adults with repaired tetralogy of fallot. Circulation. 2012;125:2440–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Baggen VJ, Driessen MM, Post MC, et al. Echocardiographic findings associated with mortality ortransplant in patients with pulmonary arterial hypertension: a systematic review and meta-analysis. Neth Heart J. 2016;24:374–89.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Moceri P, Dimopoulos K, Liodakis E, et al. Echocardiographic predictors of outcome in eisenmenger syndrome. Circulation. 2012;126:1461–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Diller GP, Radojevic J, Kempny A, et al. Systemic right ventricular longitudinal strain is reduced in adults with transposition of the great arteries, relates to subpulmonary ventricular function, and predicts adverse clinical outcome. Am Heart J. 2012;163:859–66.CrossRefPubMedGoogle Scholar
  46. 46.
    De Caro E, Bondanza S, Calevo MG, et al. Tricuspid annular plane systolic excursion for the assessment of ventricular function in adults operated on with mustard procedure for complete transposition of the great arteries. Congenit Heart Dis. 2014;9:252–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Pettersen E, Helle-Valle T, Edvardsen T, et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. J Am Coll Cardiol. 2007;49:2450–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Cordina R, von Klemperer K, Kempny A, et al. Echocardiographic predictors of mortality in adults with a Fontan circulation. JACC Cardiovasc Imaging. 2017;10:212–3.CrossRefPubMedGoogle Scholar
  49. 49.
    van der Bom T, Winter MM, Groenink M, et al. Right ventricular end-diastolic volume combined with peak systolic blood pressure during exercise identifies patients at risk for complications in adults with a systemic right ventricle. J Am Coll Cardiol. 2013;62:926–36.CrossRefPubMedGoogle Scholar
  50. 50.
    Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90:1284–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Baggen VJ, Schut AW, Cuypers JA, et al. Prognostic value of left atrial size and function in adults with tetralogy of Fallot. Int J Cardiol. 2017;236:125–31.CrossRefPubMedGoogle Scholar
  52. 52.
    Raymond RJ, Hinderliter AL, Willis PW, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefGoogle Scholar
  54. 54.
    Natanzon A, Kronzon I. Pericardial and pleural effusions in congestive heart failure-anatomical, pathophysiologic, and clinical considerations. Am J Med Sci. 2009;338:211–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16:1–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Mondillo S, Galderisi M, Mele D, et al. Speckle-tracking echocardiography: a new technique for assessing myocardial function. J Ultrasound Med. 2011;30:71–83.CrossRefPubMedGoogle Scholar
  57. 57.
    Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging. 2016;9:769–82.CrossRefPubMedGoogle Scholar
  58. 58.
    Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2017.Google Scholar
  59. 59.
    van den Hoven AT, Mc-Ghie JS, Chelu RG, et al. Transthoracic 3D echocardiographic left heart chamber quantification in patients with bicuspid aortic valve disease. Int J Cardiovasc Imaging. 2017.Google Scholar
  60. 60.
    Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Jensen AS, Broberg CS, Rydman R, et al. Impaired right, left, or biventricular function and resting oxygen saturation are associated with mortality in Eisenmenger syndrome: a clinical and cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2015;8.Google Scholar
  62. 62.
    Ortega M, Triedman JK, Geva T, Harrild DM. Relation of left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death. Am J Cardiol. 2011;107:1535–40.CrossRefPubMedGoogle Scholar
  63. 63.
    Baggen VJ, Leiner T, Post MC, et al. Cardiac magnetic resonance findings predicting mortality in patients with pulmonary arterial hypertension: a systematic review and meta-analysis. Eur Radiol. 2016;26:3771–80.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rathod RH, Prakash A, Kim YY, et al. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with fontan circulation. Circ Cardiovasc Imaging. 2014;7:502–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dobson RJ, Mordi I, Danton MH, Walker NL, Walker HA, Tzemos N. Late gadolinium enhancement and adverse outcomes in a contemporary cohort of adult survivors of tetralogy of Fallot. Congenit Heart Dis. 2017;12:58–66.CrossRefPubMedGoogle Scholar
  66. 66.
    Freed BH, Gomberg-Maitland M, Chandra S, et al. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012;14:11.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Riesenkampff E, Messroghli DR, Redington AN, Grosse-Wortmann L. Myocardial T1 mapping in pediatric and congenital heart disease. Circ Cardiovasc Imaging. 2015;8:e002504.CrossRefPubMedGoogle Scholar
  68. 68.
    Plymen CM, Sado DM, Taylor AM, et al. Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2013;14:963–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Kempny A, Fernandez-Jimenez R, Orwat S, et al. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson. 2012;14:32.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Jing L, Wehner GJ, Suever JD, et al. Left and right ventricular dyssynchrony and strains from cardiovascular magnetic resonance feature tracking do not predict deterioration of ventricular function in patients with repaired tetralogy of Fallot. J Cardiovasc Magn Reson. 2016;18:49.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119:880–90.CrossRefPubMedGoogle Scholar
  72. 72.
    Masri A, Kalahasti V, Svensson LG, et al. Aortic cross-sectional area/height ratio and outcomes in patients with bicuspid aortic valve and a dilated ascending aorta. Circ Cardiovasc Imaging. 2017;10:e006249.CrossRefPubMedGoogle Scholar
  73. 73.
    Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2016;133:e694–711.CrossRefPubMedGoogle Scholar
  74. 74.
    Guazzi M, Adams V, Conraads V, et al. EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126:2261–74.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Diller GP, Dimopoulos K, Okonko D, et al. Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication. Circulation. 2005;112:828–35.CrossRefPubMedGoogle Scholar
  76. 76.
    Inuzuka R, Diller GP, Borgia F, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation. 2012;125:250–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Radojevic J, Inuzuka R, Alonso-Gonzalez R, et al. Peak oxygen uptake correlates with disease severity and predicts outcome in adult patients with Ebstein's anomaly of the tricuspid valve. Int J Cardiol. 2013;163:305–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Giardini A, Hager A, Lammers AE, et al. Ventilatory efficiency and aerobic capacity predict event-free survival in adults with atrial repair for complete transposition of the great arteries. J Am Coll Cardiol. 2009;53:1548–55.CrossRefPubMedGoogle Scholar
  79. 79.
    Babu-Narayan SV, Diller GP, Gheta RR, et al. Clinical outcomes of surgical pulmonary valve replacement after repair of tetralogy of Fallot and potential prognostic value of preoperative cardiopulmonary exercise testing. Circulation. 2014;129:18–27.CrossRefPubMedGoogle Scholar
  80. 80.
    Ohuchi H, Negishi J, Noritake K, et al. Prognostic value of exercise variables in 335 patients after the Fontan operation: a 23-year single-center experience of cardiopulmonary exercise testing. Congenit Heart Dis. 2015;10:105–16.CrossRefPubMedGoogle Scholar
  81. 81.
    Brubaker PH, Kitzman DW. Chronotropic incompetence: causes, consequences, and management. Circulation. 2011;123:1010–20.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Diller GP, Dimopoulos K, Okonko D, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48(6):1250.CrossRefPubMedGoogle Scholar
  83. 83.
    Van De Bruaene A, Delcroix M, Pasquet A, et al. Iron deficiency is associated with adverse outcome in Eisenmenger patients. Eur Heart J. 2011;32:2790–9.CrossRefGoogle Scholar
  84. 84.
    Tay EL, Peset A, Papaphylactou M, et al. Replacement therapy for iron deficiency improves exercise capacity and quality of life in patients with cyanotic congenital heart disease and/or the Eisenmenger syndrome. Int J Cardiol. 2011;151:307–12.CrossRefPubMedGoogle Scholar
  85. 85.
    Assenza GE, Graham DA, Landzberg MJ, et al. MELD-XI score and cardiac mortality or transplantation in patients after Fontan surgery. Heart. 2013;99:491–6.CrossRefPubMedGoogle Scholar
  86. 86.
    John AS, Johnson JA, Khan M, Driscoll DJ, Warnes CA, Cetta F. Clinical outcomes and improved survival in patients with protein-losing enteropathy after the Fontan operation. J Am Coll Cardiol. 2014;64:54–62.CrossRefPubMedGoogle Scholar
  87. 87.
    Bolger AP, Sharma R, Li W, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation. 2002;106:92–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Popelova JR, Kotaska K, Tomkova M, Tomek J. Usefulness of N-terminal pro-brain natriuretic peptide to predict mortality in adults with congenital heart disease. Am J Cardiol. 2015;116:1425–30.CrossRefPubMedGoogle Scholar
  89. 89.
    Masson S, Latini R, Anand IS, et al. Prognostic value of changes in N-terminal pro-brain natriuretic peptide in Val-HeFT (Valsartan Heart Failure Trial). J Am Coll Cardiol. 2008;52:997–1003.CrossRefPubMedGoogle Scholar
  90. 90.
    Gabriels C, De Meester P, Pasquet A, et al. A different view on predictors of pulmonary hypertension in secundum atrial septal defect. Int J Cardiol. 2014;176:833–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Burkhart HM, Dearani JA, Mair DD, et al. The modified Fontan procedure: early and late results in 132 adult patients. J Thorac Cardiovasc Surg. 2003;125:1252–9.CrossRefPubMedGoogle Scholar
  92. 92.
    van Hagen IM, Boersma E, Johnson MR, et al. Global cardiac risk assessment in the registry of pregnancy and cardiac disease: results of a registry from the European Society of Cardiology. Eur J Heart Fail. 2016;18:523–33.CrossRefPubMedGoogle Scholar
  93. 93.
    Roos-Hesselink JW, Ruys TP, Stein JI, et al. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J. 2013;34:657–65.CrossRefGoogle Scholar
  94. 94.
    Ruys TP, Roos-Hesselink JW, Hall R, et al. Heart failure in pregnant women with cardiac disease: data from the ROPAC. Heart. 2014;100:231–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Salam AM, Ertekin E, van Hagen IM, et al. Atrial fibrillation or flutter during pregnancy in patients with structural heart disease. JACC Clin Electrophysiol. 2015;1:284–92.CrossRefPubMedGoogle Scholar
  96. 96.
    Ertekin E, van Hagen IM, Salam AM, et al. Ventricular tachyarrhythmia during pregnancy in women with heart disease: data from the ROPAC, a registry from the European Society of Cardiology. Int J Cardiol. 2016;220:131–6.CrossRefPubMedGoogle Scholar
  97. 97.
    European Society of G, Association for European Paediatric C, German Society for Gender M et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the task force on the management of cardiovascular diseases during pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:3147–97.CrossRefGoogle Scholar
  98. 98.
    Yap SC, Harris L, Chauhan VS, Oechslin EN, Silversides CK. Identifying high risk in adults with congenital heart disease and atrial arrhythmias. Am J Cardiol. 2011;108:723–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Lin EY, Cohen HW, Bhatt AB, et al. Predicting outcomes using the heart failure survival score in adults with moderate or complex congenital heart disease. Congenit Heart Dis. 2015;10:387–95.CrossRefPubMedGoogle Scholar
  100. 100.
    Stefanescu A, Macklin EA, Lin E, et al. Usefulness of the Seattle heart failure model to identify adults with congenital heart disease at high risk of poor outcome. Am J Cardiol. 2014;113:865–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vivan J. M. Baggen
    • 1
  • Laurie W. Geenen
    • 1
  • Jolien W. Roos-Hesselink
    • 1
    Email author
  1. 1.Department of CardiologyErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations