Advertisement

Pathophysiology and Causes of Heart Failure in Adult Congenital Heart Disease

  • Alexandra A. Frogoudaki
Chapter
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)

Abstract

Congenital heart disease (CHD) predisposes patients to numerous types of heart failure (HF) including systolic and diastolic myocardial dysfunction. There are multiple causes of HF including genetics, arrhythmia, cyanosis, ischemia, and residual hemodynamic lesions. Initial diagnosis, cardiac morphology, and type of surgical repair set the seeds for late-onset heart failure in the adult patient. This chapter will focus on the complex pathophysiology of heart failure in this population and will examine both left and right ventricular disease.

Keywords

Genetics Fibrosis Myocardial dysfunction Acquired heart disease Arrhythmias 

References

  1. 1.
    Stout K, Broberg C, Book W, Cecchin F, Chen JM, Dimopoulos K, Everitt MD, Gatzoulis M, Harris L, Hsu D, Kuvin J, Law Y, Martin C, Murphy AM, Ross H, Singh G, Spray TL. Chronic heart failure in congenital heart disease: a scientific statement from the American Heart Association. Circulation. 2016;133(8):770–801.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hinton R, Ware SM. Heart failure in pediatric patients with congenital heart disease. Circ Res. 2017;120:978–9942.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–40.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132(18):1734–42.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Iacobazzi D, M-S Suleiman MG, SJ George MC, Tulloh RM. Cellular and molecular basis of RV hypertrophy in congenital heart disease. Heart. 2016;102:12–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.CrossRefGoogle Scholar
  7. 7.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803.  https://doi.org/10.1016/j.jacc.2017.04.025. Epub 2017 Apr 28.CrossRefPubMedGoogle Scholar
  8. 8.
    Bolger AP, Sharma R, Li W, Leenarts M, et al. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation. 2002;106(1):92–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.CrossRefGoogle Scholar
  10. 10.
    Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy S, Zhao M, Hu DQ, Fajardo G, Katznelson E, Punn R, Spin JM, Chan FP, Bernstein D. Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol Heart Circ Physiol. 2013;304:H1314–27.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood). 2005;230:507–19.CrossRefGoogle Scholar
  13. 13.
    Saito D, Tani H, Kusachi S, Uchida S, Ohbayashi N, Marutani M, Maekawa K, Tsuji T, Haraoka S. Oxygen metabolism of the hypertrophic right ventricle in open chest dogs. Cardiovasc Res. 1991;25:731–9.CrossRefPubMedGoogle Scholar
  14. 14.
    van der Bom T, Winter MM, Bouma BJ, Groenink M, Vliegen HW, Pieper PG, van Dijk AP, Sieswerda GT, Roos-Hesselink JW, Zwinderman AH, Mulder BJ. Effect of valsartan on systemic right ventricular function: a double-blind, randomized, placebo-controlled pilot trial. Circulation. 2013;127:322–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Schertz C, Pinsky MR. Effect of the pericardium on systolic ventricular interdependence in the dog. J Crit Care. 1993;8:17–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71:473–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Danton MH, Byrne JG, Flores KQ, Hsin M, Martin JS, Laurence RG, Cohn LH, Aklog L. Modified Glenn connection for acutely ischemic right ventricular failure reverses secondary left ventricular dysfunction. J Thorac Cardiovasc Surg. 2001;122:80–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Gan C, Lankhaar JW, Marcus JT, Westerhof N, Marques KM, Bronzwaer JG, Boonstra A, Postmus PE, Vonk-Noordegraaf A. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2006;290(4):H1528–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, Marek J, Bonhoeffer P, Taylor AM. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J. 2009;30:2266–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Panesar DK, Burch M. Assessment of diastolic function in congenital heart disease. Front Cardiovasc Med. 2017;4:5.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tay EL, Frogoudaki A, Inuzuka R, Giannakoulas G, Prapa M, Li W, Pantely G, Dimopoulos K, Gatzoulis MA. Exercise intolerance in patients with congenitally corrected transposition of the great arteries relates to right ventricular filling pressures. Int J Cardiol. 2011;147(2):219–23.CrossRefPubMedGoogle Scholar
  22. 22.
    Ladouceur M, Kachenoura N, Soulat G, Bollache E, Redheuil A, Azizi M, Delclaux C, Chatellier G, Boutouyrie P, Iserin L, Bonnet D, Mousseaux E. Impaired atrioventricular transport in patients with transposition of the great arteries palliated by atrial switch and preserved systolic right ventricular function: a magnetic resonance imaging study. Congenit Heart Dis. 2017.  https://doi.org/10.1111/chd.12472. [Epub ahead of print].
  23. 23.
    Shin YR, Jung JW, Kim NK, Choi JY, Kim YJ, Shin HJ, Park YH, Park HK. Factors associated with progression of right ventricular enlargement and dysfunction after repair of tetralogy of Fallot based on serial cardiac magnetic resonance imaging. Eur J Cardiothorac Surg. 2016;50(3):464–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.CrossRefPubMedGoogle Scholar
  25. 25.
    Fahed AC, Roberts AE, Mital S, Lakdawala NK. Heart failure in congenital heart disease: a confluence of acquired and congenital. Heart Fail Clin. 2014;10(1):219–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Wessels MW, Willems PJ. Mutations in sarcomeric protein genes not only lead to cardiomyopathy but also to congenital cardiovascular malformations. Clin Genet. 2008;74:16–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Kelle AM, Bentley SJ, Rohena LO, Cabalka AK, Olson TM. Ebstein anomaly, left ventricular non-compaction, and early onset heart failure associated with a de novo α-tropomyosin gene mutation. Am J Med Genet A. 2016;170(8):2186–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left ventricular noncompaction: a distinct genetic cardiomyopathy? J Am Coll Cardiol. 2016;68:949–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Ghonim S, Voges I, Gatehouse PD, Keegan J, Gatzoulis MA, Kilner PJ, Babu-Narayan S. Myocardial architecture, mechanics, and fibrosis in congenital heart disease. Front Cardiovasc Med. 2017;4:30.  https://doi.org/10.3389/fcvm.2017.00030.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sanchez-Quintana D, Anderson RH, Ho SY. Ventricular myoarchitecture in tetralogy of Fallot. Heart. 1996;76(3):280–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Redington A, Anderson R, Van Arsdell G. Congenital diseases in the right heart. London: Springer; 2009.CrossRefGoogle Scholar
  32. 32.
    Broberg CS, Chugh SS, Conklin C, Sahn DJ, Jerosch-Herold M. Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease. Circ Cardiovasc Imaging. 2010;3:727–34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Perloff JK. Cyanotic congenital heart disease: the coronary arterial circulation. Curr Cardiol Rev. 2012;8:1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ghorbel MT, Cherif M, Jenkins E, Mokhtari A, Kenny D, Angelini GD, Caputo M. Transcriptomic analysis of patients with tetralogy of Fallot reveals the effect of chronic hypoxia on myocardial gene expression. J Thorac Cardiovasc Surg. 2010;140(2):337–45.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Imura H, Caputo M, Parry A, Pawade A, Angelini GD, Suleiman MS. Age-dependent and hypoxia related differences in myocardial protection during pediatric open heart surgery. Circulation. 2001;103:1551–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Modi P, Imura H, Caputo M, Pawade A, Parry A, Angelini GD, et al. Cardiopulmonary bypass induced myocardial reoxygenation injury in pediatric patients with cyanosis. J Thorac Cardiovasc Surg. 2002;124:1035–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Rutz T, de Marchi SF, Schwerzmann M, Vogel R, Seiler C. Right ventricular absolute myocardial blood flow in complex congenital heart disease. Heart. 2010;96:1056–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Mondésert B, Dubin AM, Khairy P. Diagnostic tools for arrhythmia detection in adults with congenital heart disease and heart failure. Heart Fail Clin. 2014;10(1):57–67.CrossRefPubMedGoogle Scholar
  39. 39.
    Escudero C, Khairy P, Sanatani S. Electrophysiologic considerations in congenital heart disease and their relationship to heart failure. Can J Cardiol. 2013;29:821–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Khairy P, Van Hare GF, Balaji S, Berul CI, Cecchin F, Cohen MI, Daniels C, Deal BJ, Dearani JA, de Groot N, Dubin AM, Harris L, Janousek J, Kanter RJ, Karpawich PP, Perry JC, Seslar SP, Shah MJ, Silka MJ, Triedman JK, Walsh EP, Warnes CA. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the Governing Bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Can J Cardiol. 2014;30:e1–e63.CrossRefPubMedGoogle Scholar
  41. 41.
    Bhatt A, Foster E, Kuehl K, et al. Congenital heart disease in the older adult: a scientific statement from the American Heart Association. Circulation. 2015;131(21):1884–931.CrossRefPubMedGoogle Scholar
  42. 42.
    Tutarel O. Acquired heart conditions in adults with congenital heart disease: a growing problem. Heart. 2014;100(17):1317–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee MGY, Hemmes RA, Mynard J, Lambert E, Head GA, Cheung MMH, Konstantinov IE, Brizard CP, Lambert G, d'Udekem Y. Elevated sympathetic activity, endothelial dysfunction, and late hypertension after repair of coarctation of the aorta. Int J Cardiol. 2017;243:185–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Madsen NL, Marino BS, Woo JG, Thomsen RW, Videbœk J, Laursen HB, Olsen M. Congenital heart disease with and without cyanotic potential and the long-term risk of diabetes mellitus: a population-based follow-up study. J Am Heart Assoc. 2016;5(7).CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Budts W, Roos-Hesselink J, Rädle-Hurst T, Eicken A, McDonagh TA, Lambrinou E, Crespo-Leiro MG, Walker F, Frogoudaki AA. Treatment of heart failure in adult congenital heart disease: a position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology. Eur Heart J. 2016;37(18):1419–27.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wald R, Valente AM, Marelli A. Heart failure in adult congenital heart disease: emerging concepts with a focus on tetralogy of Fallot. Trends Cardiovasc Med. 2015;25(5):422–32.CrossRefPubMedGoogle Scholar
  47. 47.
    Broberg CS, Aboulhosn J, Mongeon FP. Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of Fallot. Am J Cardiol. 2011;107(8):1215–20.CrossRefPubMedGoogle Scholar
  48. 48.
    Cuypers J, Eindhoven J, Slager M, et al. The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur Heart J. 2014;35:1666–74.CrossRefPubMedGoogle Scholar
  49. 49.
    Rydman R, Gatzoulis M, Yen Ho S, et al. Systemic right ventricular fibrosis detected by cardiovascular magnetic resonance is associated with clinical outcome, mainly new-onset atrial arrhythmia, in patients after atrial redirection surgery for transposition of the great arteries. Circ Cardiovasc Imaging. 2015;8:e002628.CrossRefPubMedGoogle Scholar
  50. 50.
    Warnes C. Transposition of the great arteries. Circulation. 2006;114:2699–709.CrossRefPubMedGoogle Scholar
  51. 51.
    Frogoudaki AA. Assessing the failing systemic right ventricle. Angiology. 2008;59(2 Suppl):93S–6S.CrossRefPubMedGoogle Scholar
  52. 52.
    Gewillig M. The Fontan circulation. Heart. 2005;91:839–46.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Deal B, Jacobs M. The failing Fontan circulation. Heart. 2012;98:1098e1104.CrossRefGoogle Scholar
  54. 54.
    Dimopoulos K, Okonko D, Diller GP. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 2006;113:2796–802.CrossRefPubMedGoogle Scholar
  55. 55.
    Broberg C, Prasad S, Carr C, et al. Myocardial fibrosis in Eisenmenger syndrome: a descriptive cohort study exploring associations of late gadolinium enhancement with clinical status and survival. J Cardiovasc Magn Res. 2014;16:32.CrossRefGoogle Scholar
  56. 56.
    Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50.CrossRefPubMedGoogle Scholar
  57. 57.
    Gopinathannair R, Etheridge SP, Marchlinski FE, Spinale FG, Lakkireddy D, Olshansky B. Arrhythmia-induced cardiomyopathies: mechanisms, recognition, and management. Am Coll Cardiol. 2015;66(15):1714–28.CrossRefGoogle Scholar
  58. 58.
    Armstrong PW, Stopps TP, Ford SE, et al. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure. Circulation. 1986;74:1075–84.CrossRefPubMedGoogle Scholar
  59. 59.
    Stämpfli SF, Plass A, Müller A, Greutmann M. Complete recovery from severe tachycardia-induced cardiomyopathy in a patient with Ebstein’s anomaly. World J Pediatr Congenit Heart Surg. 2014;5(3):484–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ATTIKON University Hospital, Athens UniversityAthensGreece

Personalised recommendations