Long Waves Influence on Polarization Ratio for Microwave Backscattering from the Sea Surface

Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The effect of slopes created by long waves on the resonance backscattering of microwave radio waves analyzed. The analysis is carried out within the framework of the Gaussian model of slopes distribution. The polarization ratio increases by approximately 10% as the wind speed increases up to 5 m/s if the sounding is performed along the direction of wind. If the sensing is accomplished across the direction of wind, as the wind speed tends to 5 m/s the polarization ratio increases to approximately 6%. The effect of the presence of long waves weakly depends on the incidence angle.

Keywords

Remote sensing The microwave radiation Resonance scattering Polarization ratio Sea surface Long waves 

Notes

Acknowledgements

This work was carried out in the context of the State project № 0827-2014-0011.

References

  1. 1.
    Valenzuela, G.: Theories for the interaction of electromagnetic and ocean waves - a review. Bound. Layer Meteorol. 13(1–4), 61–85 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    Bass, F.G., Fuchs, I.M.: Wave Scattering from Statistically Rough Surfaces. Pergamon Press, Oxford (1978)Google Scholar
  3. 3.
    Thompson, D., Elfouhaily, T., Chapron, B.: Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. In: Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 1998, pp. 1671–1673. IEEE, Seattle (1998)Google Scholar
  4. 4.
    Kudryavtsev, V., Hauser, D., Caudal, G., Chapron, B.: A semiem-pirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. 108(C3), 8054 (2003). https://doi.org/10.1029/2001JCOO1003 ADSCrossRefGoogle Scholar
  5. 5.
    Zapevalov, A.S.: Bragg scattering of centimeter electromagnetic radiation from the sea surface: the effect of waves longer than Bragg components. Izv. Atmos. Ocean Phys. 45(2), 253–261 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Zapevalov, A.S., Lebedev, N.E.: Simulation of statistical characteristics of sea surface during remote optical sensing. Atmos. Ocean. Opt. 27(6), 487–492 (2014)CrossRefGoogle Scholar
  7. 7.
    Zapevalov, A.S., Pustovoitenko, V.V.: Modeling of the probability distribution function of sea surface slopes in problems of radio wave scattering. Radiophys. Quantum Electron. 53(2), 100–110 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Plant, W.J.: A two-scale model of short wind-generated waves and scatterometry. J. Geophys. Res. 91, 10735–10749 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    Hollinger, J.P.: Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Electron. (GE) 9, 165–169 (1971)CrossRefGoogle Scholar
  10. 10.
    Wilheit, T.T.: A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Trans. Geosci. Electron. (GE) 17(4), 244–249 (1979)CrossRefGoogle Scholar
  11. 11.
    Cox, C., Munk, W.: Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Opt. Soc. Am. 44(11), 838–850 (1954)ADSCrossRefGoogle Scholar
  12. 12.
    Bréon, F.M., Henriot, N.: Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geoph. Res. 111(56), 1–10 (2006). C06005Google Scholar
  13. 13.
    Zapevalov, A.S.: On the estimation of the angular energy distribution function of dominant sea waves. Izv. Atmos. Ocean Phys. 31(6), 802–808 (1996)Google Scholar
  14. 14.
    Monin, A.S., Krasitskii, V.P.: Phenomena on the Ocean Surface. Gidrometeoizdat, Leningrad (1985). [in Russian]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Hydrophysical Institute RASSevastopolRussia

Personalised recommendations