Multidecadal Variability of Hydro-Thermodynamic Characteristics and Heat Fluxes in North Atlantic

Conference paper
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The article describes a manifestation of Atlantic multidecadal oscillation (AMO) in the variability of hydro-thermodynamic characteristics and ocean surface heat fluxes in North Atlantic. It is shown that multidecadal changes in the upper mixed layer temperature and mixed layer depth, as well as sea surface height (SSH), are statistically significant and show physically consistent changes. Convective mixing of waters at high latitudes is stronger for negative AMO phase with an exception the case of Great Salinity Anomaly. Large-scale fluctuations in SSH are most pronounced in the eastern part of North Atlantic. Multidecadal changes in the net surface heat fluxes and horizontal heat advection are coherent. The increase (decrease) of horizontal heat advection in the negative (positive) AMO phase leads to an increase (decrease) of the ocean heat release to the atmosphere. Multidecadal variability of the horizontal heat advection is due to changes in the dynamics of currents, rather than temperature gradients.

Keywords

Atlantic multidecadal oscillation Variability North Atlantic 

Notes

Acknowledgments

This study was partially supported by the Russian Scientific Foundation, grant 17-17-01295

References

  1. 1.
    Voskresenskaya, E.N., Polonskii, A.B.: Low-frequency variability of hydrometeorological fields and heat fluxes over the North Atlantic. Phys. Oceanogr. 14(4), 203–220 (2004)Google Scholar
  2. 2.
    Delworth, T., Mann, M.E.: Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16(9), 661–676 (2000)CrossRefGoogle Scholar
  3. 3.
    Enfield, D.B., Mestas-Nunez, A.M., Trimble, P.J.: The Atlantic multidecadal oscillation and its relation to rainfall river flows in the continental U.S. Geophys. Res. Lett. 28(10), 2077–2080 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Guan, B., Nigam, S.: Analysis of Atlantic SST variability factoring interbasin links and the secular trend: clarified structure of the Atlantic multidecadal oscillation. J. Clim. 22(15), 4228–4240 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Kushnir, Y.: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Clim. 7(1), 141–157 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Schlesinger, M.E., Ramankutty, N.: An oscillation in the global climate system of period 65–70 years. Nature 367(6465), 723–726 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Ting, M., Kushnir, Y., Seager, R., Li, C.: Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 22(6), 1469–1481 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Kerr, R.A.: A North Atlantic climate pacemaker for the centuries. Science 288(5473), 1984–1985 (2000)CrossRefGoogle Scholar
  9. 9.
    Enfield, D.B., Mestas-Nunez, A.M.: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Clim. 12(9), 2719–2733 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Sutton, R.T., Hodson, D.L.R.: Influence of the ocean on North Atlantic climate variability 1871–1999. J. Clim. 16(20), 3296–3313 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Danabasoglu, G., Yeager, S.G., Kim, W.M., et al.: North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: inter-annual to decadal variability. Ocean Model. 97, 65–90 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Knight, J.R., Folland, C.K., Scaife, A.A.: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 33(17), L17706 (2006).  https://doi.org/10.1029/2006GL026242 ADSCrossRefGoogle Scholar
  13. 13.
    Sutton, R.T., Hodson, D.L.R.: Atlantic Ocean forcing of North American and European summer climate. Science 309(5731), 115–118 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Panin, G.N., Diansky, N.A.: On the correlation between oscillations of the Caspian sea level and the North Atlantic climate. Izv. Atmos. Oceanic Phys. 50(3), 266–277 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Panin, G.N., Diansky, N.A.: Climatic variations in the Arctic, North Atlantic, and the Northern Sea route. Dokl. Earth Sci. 462(1), 505–509 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Rowell, D.P., Folland, C.K., Maskell, K., Ward, M.N.: Variability of summer rainfall over tropical North Africa (1906–92): observations and modeling. Q. J. R. Meteorol. Soc. 121(523), 669–704 (1995)ADSGoogle Scholar
  17. 17.
    Trenberth, K.E., Shea, D.J.: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33(12), L12704 (2006).  https://doi.org/10.1029/2006GL026894 ADSCrossRefGoogle Scholar
  18. 18.
    Häkkinen, S., Rhines, P.B., Worthen, D.L.: Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334(6056), 655–659 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Polonskii, A.B.: Atlantic multidecadal oscillation and its manifestations in the Atlantic-European region. Phys. Oceanogr. 18(4), 227–236 (2008)CrossRefGoogle Scholar
  20. 20.
    Venegas, S.A., Mysak, L.A.: Is there a dominant timescale of natural climate variability in the Arctic? J. Clim. 13(19), 3412–3434 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Knight, J., Allan, R., Folland, C., Vellinga, M., Mann, M.E.: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32(20), L20708 (2005).  https://doi.org/10.1029/2005GL024233 ADSCrossRefGoogle Scholar
  22. 22.
    Chylek, P., Folland, C.K., Dijkstra, H.A., Lesins, G., Dubey, M.K.: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 38(13), L13704 (2011).  https://doi.org/10.1029/2011GL047501 ADSCrossRefGoogle Scholar
  23. 23.
    Frankcombe, L.M., Dijkstra, H.A.: Coherent multidecadal variability in North Atlantic sea level. Geophys. Res. Lett. 36(15), L15604 (2009).  https://doi.org/10.1029/2009GL039455 ADSCrossRefGoogle Scholar
  24. 24.
    Eden, C., Jung, T.: North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J. Clim. 14(5), 676–691 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Mantua, N.J., Hare, S.R.: The Pacific decadal oscillation. J. Oceanogr. 58(1), 35–44 (2002)CrossRefGoogle Scholar
  26. 26.
    Liu, Z.: Dynamics of interdecadal climate variability: a historical perspective. J. Clim. 25(6), 1963–1995 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Timmermann, A., Latif, M., Voss, R., Grotzner, A.: Northern hemispheric interdecadal variability: a coupled air-sea mode. J. Clim. 11(8), 1906–1931 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    Griffies, S.M., Tziperman, E.: A linear thermohaline oscillator driven by stochastic atmospheric forcing. J. Clim. 8(10), 2440–2453 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Eden, C., Willebrand, J.: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Clim. 14(10), 2266–2280 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    de Verdière, Colin: A., Huck, T.: Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr. 29(5), 893–910 (1999)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Frankcombe, L.M., Dijkstra, H.A., Von der Heydt, A.: Noise-induced multidecadal variability in the North Atlantic: excitation of normal modes. J. Phys. Oceanogr. 39(1), 220–233 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Te Raa, L.A., Dijkstra, H.A.: Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr. 32(1), 138–160 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Polonsky, A.B.: Interdecadal variability in the ocean-atmosphere system. Russ. Meteorol. Hydrol. 5, 37–44 (1998)Google Scholar
  34. 34.
    Wang, C., Dong, S., Munoz, E.: Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Clim. Dyn. 34(7–8), 953–968 (2010)CrossRefGoogle Scholar
  35. 35.
    Gusev, A.V., Diansky, N.A.: Numerical simulation of the world ocean circulation and its climatic variability for 1948–2007 using the INMOM. Izv. Atmos. Oceanic Phys. 50(1), 1–12 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Volodin, E.M.: The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4. Environ. Res. Lett. 8(3), 035038 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Frankcombe, L.M., Dijkstra, H.A.: The role of Atlantic – Arctic exchange in North Atlantic multidecadal climate variability. Geophys. Res. Lett. 38(16), L16603 (2011).  https://doi.org/10.1029/2011GL048158 ADSCrossRefGoogle Scholar
  38. 38.
    Dima, M., Lohmann, G.: A hemispheric mechanism for the Atlantic Multidecadal Oscillation. J. Clim. 20(11), 2706–2719 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Jungclaus, J.H., Haak, H., Latif, M., Mikolajewicz, U.: Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Clim. 18(19), 4013–4031 (2005).  https://doi.org/10.1175/JCLI3462.1 ADSCrossRefGoogle Scholar
  40. 40.
    Wang, C., Dong, S., Evan, A.T., Foltz, G.R., Lee, S.-K.: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Clim. 25(15), 5404–5415 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Balmaseda, M.A., Vidard, A., Anderson, D.L.T.: The ECMWF ocean analysis system: ORA-S3. Mon. Wea. Rev. 136(8), 3018–3034 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Balmaseda, M.A., Mogensen, K., Weaver, A.T.: Evaluation of the ECMWF ocean reanalysis system ORA-S4. Q. J. R. Meteorol. Soc. 139(674), 1132–1161 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Carton, J.A., Giese, B.S.: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev. 136(8), 2999–3017 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Chang, Y.-S., Zhang, S., Rosati, A., Delworth, T.L., Stern, W.F.: An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation Clim. Dyn. 40(3–4), 775–803 (2013)Google Scholar
  45. 45.
    Köhl, A.: Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q. J. R. Meteorol. Soc. 141(686), 166–181 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Pacanowski, R.C., Philander, S.G.H.: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11(11), 1443–1451 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    Large, W.G., Yeager, S.G.: The global climatology of an interannually varying air–sea flux data set. Clim. Dyn. 33(2–3), 341–364 (2009)CrossRefGoogle Scholar
  48. 48.
    Dickson, R.R., Meincke, J., Malmberg, S.-A., Lee, A.J.: The «great salinity anomaly» in the northern North Atlantic 1968–1982. Prog. Oceanogr. 20(2), 103–151 (1988)ADSCrossRefGoogle Scholar
  49. 49.
    Boon, J.D.: Evidence of sea level acceleration at US and Canadian tide stations, Atlantic Coast. North Am. J. Coast. Res. 28(6), 1437–1445 (2012)CrossRefGoogle Scholar
  50. 50.
    Stommel, H.M.: The Gulf Stream: a physical and dynamical description, p. 248. University of California Press, Berkeley and Los Angeles (1958)Google Scholar
  51. 51.
    Iselin, C.O.D.: Preliminary report on long-period variations in the transport of the Gulf Stream System. Pap. Phys. Oceanogr. Meteorol. 8(1), 1–40 (1940)Google Scholar
  52. 52.
    Häkkinen, S.: Variability in sea surface height: a qualitative measure for the meridional overturning in the North Atlantic. J. Geophys. Res. Oceans (1978–2012) 106(C7), 13837–13848 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Numerical Mathematics of the RASMoscowRussia
  3. 3.N.N. Zubov State Oceanographic InstituteMoscowRussia
  4. 4.Institute of Natural and Technical SystemsSevastopolRussia

Personalised recommendations