Advertisement

Aquatic Plants as Human Food

  • Muhammad Aasim
  • Allah Bakhsh
  • Muhammed Sameeullah
  • Mehmet Karataş
  • Khalid Mahmood Khawar
Chapter

Abstract

Water is one of the main components of the earth and almost 70% of the earth is surrounded by water found in oceans, seas, lakes, rivers and below the Earth’s surface. All ancient human civilizations were established and developed near the water bodies in order to fill their stomach. These water bodies provided food source like fish for consumption and plants as vegetables or for medicinal purposes. Since ancient times, the aquatic plants have had significant economic and social impact on humans on the basis of their traditional knowledge. However, localized consumption of these aquatic plants as food or as medicinal plants limits their expansion to the world market. A large number of aquatic or semiaquatic plants have potential for commercialization as food plants due to their use and nutritional value but lack of knowledge hinders exploitation of their potential.

This review presents general information on marine or freshwater plants along with form of uses and dishes made. Furthermore, information about underutilized aquatic plants is also given along with well-established aquatic edible plants.

Keywords

Aquatic Edible Fresh water Marine Vegetables 

Notes

Acknowledgments

Authors acknowledge the efforts of Ms. Areeza Emman for editing and linguistic control.

References

  1. Abbas (2012) There are better herbs to use: history, uses and health benefits of bulrushes; Herbs-Treat and Taste. http://herbs-treatandtaste.blogspot.com/2012/03/bulrush-there-are-better-herbs-to-use.html
  2. Abhilash PC, Singh N, Sylas VP, Kumar BA, Mathew JC, Sateesh R, Thomas AP (2008) Eco-distribution mapping of invasive weed Limnocharis flava (L.) Bucgenau using geographical information system: implications for contaminent and integrated weed management for ecosysytem conservation. Taiwanis 53:30–41Google Scholar
  3. Ahmed MB, Ahmed S, Salahin M, Sultana R, Khatun M, Razvy MA, Hannan MM, Islam R, Hossain MM (2007) Standardization of a suitable protocol for in vitro clonal propagation of Acorus calamus L.-An important medicinal plant in Bangladesh. Am-Eu J Sci Res 2:136–140Google Scholar
  4. Aiken SG (1981) A conspectus of Myriophyllum (Haloragaceae) in North America. Brittonia 33:57–69CrossRefGoogle Scholar
  5. Akwee PE, Netondo G, Kataka JA, Palapala VA (2015) A critical review of the role of taro ColocAsia esculenta L. (Schott) to food security: a comparative analysis of Kenya and Pacific Island taro germplasm. Sci Agri 9:101–108Google Scholar
  6. Aladedunye F, Przybylski R, Rudzinska M, Klensporf-Pawlik D (2013) γ-Oryzanols of North American wild rice (Zizania palustris). J Am Oil Chem Soc 90:1101–1109PubMedPubMedCentralCrossRefGoogle Scholar
  7. Allen DJ (2011) Neptunia oleracea. The IUCN red list of threatened species.  https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T168883A6545251.en
  8. Amiri H (2012) Volatile constituents and antioxidant activity of flowers, stems and leaves of Nasturtium officinale R. Br. Nat Prod Res 26:109–115PubMedCrossRefGoogle Scholar
  9. Anderson AA (1976) Wild rice: nutritional review. Cereal Chemistry 53:949–955Google Scholar
  10. Anderson JT (2012) Exploring wetlands with the Wetland Guru..! Jalaplavit 3:7–9Google Scholar
  11. Anonymous (2017a) Seaweed as human food. Michael Guiry’s Seaweed SiteGoogle Scholar
  12. Anonymous (2017b) Kai recepies used by Kawhia Maori and Early pioneers. Kawhia. maori.nzGoogle Scholar
  13. Anonymous (2017c) Micronutrient information center: iodine. Oregon State University: Linus Pauling InstituteGoogle Scholar
  14. Anonymous (2017d) Waterchestnuts, Chinese (matai) raw. Nutrition Data.com. CondéNet, Inc
  15. Anonymous (2017e) Nutritonal benefits of wild rice, a wild and cultivated grain alternative. http://www.superfoods-for-superhealth.com/what-is-wild-rice.html
  16. Azan SSE (2011) Invasive aquatic plants and the aquarium and ornamental pond industries. Theses and dissertations, Ryerson UniversityGoogle Scholar
  17. Ballesteros E, Martín D, Uriz MJ (1992) Biological activity of extracts from some Mediterranean macrophytes. Bot Mar 35:481–485Google Scholar
  18. Banik G, Bawari M, Choudhury MD, Choudhury S, Sharma GD (2010) Some anti-diabetic plants of Southern Assam. Assam Univ J Sci Technol Biol Environ Sci 5:114–119Google Scholar
  19. Bautista O, Kosiyachinda S, Abd Shukor A, Soenoeadju V (1988) Traditional vegetables of ASEAN. ASEAN Food J 4:47–58Google Scholar
  20. BBC (2005) Spotlight presenters in a liter over laverGoogle Scholar
  21. Benson AJ, Jacono CC, Fuller PL, McKercher ER, Richerson MM (2004) Summary report of nonindigenous aquatic species in U.S. fish and wildlife service region 5. U.S. Fish and Wildlife Service, Arlington, VA, p 145Google Scholar
  22. Bhardwaj A, Modi KP (2016) A review on therapeutic potential of Nelumbo nucıfera (GAERTN): the sacred lotus. IJPSR 7:42–54Google Scholar
  23. Binggeli P (2003) Pontederiaceae, Eichhornia crassipes, water hyacinth, jacinthe d’eau, tetezanalika, tsikafokafona. In: Goodman SM, Benstead JP (eds) The natural history of Madagascar. University of Chicago Press, Chicago, pp 476–478Google Scholar
  24. Bixler JH, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J App Phycol 23:321–335CrossRefGoogle Scholar
  25. Borowitzka MA (1998) Company news. J App Phycol 10:417CrossRefGoogle Scholar
  26. Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella Asiatica. Phytomedicine 7:427–448PubMedCrossRefGoogle Scholar
  27. Burtin P (2003) Nutritional value of seaweeds. Elec J Environ Agric Food Chem 2:498–503Google Scholar
  28. Casanova NA, Ariagno JI, Lopez Nigro MM, Mendeluk GR, Gette MD, Petenatti E, Palaoro LA, Carballo MA (2013) In vivo antigenotoxic activity of watercress juice (Nasturtium officinale) against induced DNA damage. J Appl Toxicol 33:880–885PubMedCrossRefGoogle Scholar
  29. Chandana M, Rupa M, Chakarborthy GS (2013) A review on potential of plants under trapa species. IJRPC 3:502–508Google Scholar
  30. Chen F, Jiang Y (2001) Algae and their biotechnological potential. Kluwer Academic, Dordrecht, London, p 316CrossRefGoogle Scholar
  31. Cho EJ, Yokozawa T, Rhyu DY, Gim SC, Shibahara N, Park JC (2003) Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1diphenyl-2-picrylhydrazyl radical. Phytomedicine 10:544–551PubMedCrossRefGoogle Scholar
  32. Coiro M, Lumaga MRB (2013) Aperture evolution in Nymphaeaceae: insights from a micromorphological and ultrastructural investigation. Grana 52:1–10CrossRefGoogle Scholar
  33. Cook CDK, Gut BJ, Rix EM, Schneller J, Seitz M (1974) Water plants of the world. A manual for the identification of the genera of freshwater Macrophytes. Dr W. Junk B.V. Publishers, The Hague, 561 pGoogle Scholar
  34. Counts RL, Lee PF (1987) Patterns of variation in Ontario wild rice (Zizania aquatica L.). I. The influence of some climatic factors on the differentiation of populations. Aquatic Bot 28:373–392CrossRefGoogle Scholar
  35. Czerpak R, Szamrej IK (2003) The effect of β-estradiol on chlorophylls and carotenoids content in Wolfia arrhiza (L.) Wimm. (Lemnaceae) growing in municipal Bialystok tap water. Pol J Environ Stud 12:677–684Google Scholar
  36. Dennell R (1992) The origins of agriculture: an international perspective. Smithsonian Institution Press, Washington, DCGoogle Scholar
  37. Dennis I, Morris DI (2009) Polygonaceae, version 2009:1. In: Duretto MF (ed) Flora of Tasmania Online. Hobart, Tasmanian Herbarium, Tasmanian Museum & Art Gallery, p 17. www.tmag.tas.gov.au/floratasmania Google Scholar
  38. Diop FN (2010) Aponogeton distachyos. The IUCN red list of threatened species 2010.  https://doi.org/10.2305/IUCN.UK.2010-3.RLTS.T185242A8373720.en
  39. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22:296–302PubMedCrossRefGoogle Scholar
  40. Dua TK, Dewanjee S, Gangopadhyay M, Khanra R, Zia-Ul-Haq M, De Feo V (2015) Ameliorative effect of water spinach, Ipomoea aquatic (Convolvulaceae), against experimentally induced arsenic toxicity. J Transl Med 13:81PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duke JA (1983) Eichhornia crassipes: handbook of energy cropsGoogle Scholar
  42. Duvall MR (1995) Wild rice (Zizania palustris). In: Williams JT (ed) Cereals and pseudo cereals. Chapman & Hall, London, pp 261–271Google Scholar
  43. Edwards P (1980) Food potential of aquatic macrophytes. Manila, The Philippines, International Center for Living Aquatic Resources ManagementGoogle Scholar
  44. Elias TS, Dykeman PA (2009) Edible Wild Plants. Sterling Publishing Co Inc, New York, pp 69–70Google Scholar
  45. EPPO (2012) Alternanthera philoxeroides (Amaranthaceae). https://www.eppo.int/INVASIVE_PLANTS/iap_list/Alternanthera_philoxeroides.htm
  46. Facciola S (1990) Cornucopia—a source book of edible plants. Kampong Publications, Vista, CAGoogle Scholar
  47. FAO (1994) Tannia, yautia (Xanthosoma sagittifolium). Neglected crops: 1492 from a different perspective. http://www.fao.org/docrep/t0646e/T0646E0o.htm
  48. Fernando PU (2011) Modelling of growth cycle of water hyacinth: an application to Bolgoda LakeGoogle Scholar
  49. Fitton HJ (2007) Macroalgal fucoidan extracts: a new opportunity for marine cosmetics. Cosmet Toiletries 122:55–64Google Scholar
  50. FNA (2009) Sagitaria latifolia. Flora of North America. Missouri Botanical GardensGoogle Scholar
  51. Ge Y, Zhang C, Jiang Y, Yue C, Jiang Q, Min H, Chang J (2011) Soil microbial abundances andenzyme activities in different rhizospheres in an integrated vertical flow constructed wetland. CLEAN 39:206–211Google Scholar
  52. Glen Nagel ND, Oates B (2007) A phytomedical overview: Wasaba japonica. http://ndnr.com/pain-medicine/a-phytomedical-overview-wasabia-japonica-2/
  53. Gohil KJ, Pater JA, Gajjar AK (2010) Pharmacological review on Centella Asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546–556PubMedPubMedCentralCrossRefGoogle Scholar
  54. Göhl B (1975) Tropical feeds. FAO, Rome, p 661Google Scholar
  55. Gorai D, Jash SK, Singh RK, Gangopadhyay A (2014) Chemical and pharmacological aspects of Limnophila aromatica (Scrophulariaceae): an overview. AJPCT 2:348–356Google Scholar
  56. Govaerts R (2012) World checklist of Araceae. Royal Botanic Gardens, Kew, London, UK. http://apps.kew.org/wcsp/ Google Scholar
  57. Grassby T (2008) Phenolics and phenolic-polysaccharide linkages in Chinese water chestnut (Eleocharis dulcis) cell walls. Doctoral thesis, University of East AngliaGoogle Scholar
  58. Green A (2004) Field guide to produce. Quirk Productions. p 284Google Scholar
  59. Grímsson F, Zetter R, Halbritter H, Grimm GW (2014) Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: implications for the origin and palaeobiogeography of the genus. Rev Palaeobot Palynol 200:161–187PubMedPubMedCentralCrossRefGoogle Scholar
  60. Grubben GJH, Denton OA (2004) Plant resources of tropical Africa 2. Vegetables. PROTA Foundation, Wageningen; Backhuys, Leiden; CTA, WageningenGoogle Scholar
  61. Guesnet P, Alessandri JM (2011) Docosahexaenoic acid (DHA) and the developing central nervous system (CNS)-implications for dietary recommendations. Biochimie 93:7–12PubMedCrossRefGoogle Scholar
  62. Gunasekera L (2008) Sessile joyweed (Alternanthera sessilis): a popular leafy vegetable in South East Asia but federal noxious weed in USA. Proceedings of the 16th Australian weed conference, 18–22 May, Queensland AustraliaGoogle Scholar
  63. Guo JT, Lee HL, Chiang SH, Lin FI, Chang CY (2001) Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J Food Drug Anal 9:96–101Google Scholar
  64. Gupta AK (2011a) Aponogeton natans. The IUCN Red List of Threatened Species 2011.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168889A6546113.en
  65. Gupta AK (2011b) Hydrolea zeylanica. The IUCN red list of threatened species 2011.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168935A6550745.en
  66. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from amrine bacteria to Japanese gut micrbiota. Nature 464:908–912PubMedCrossRefGoogle Scholar
  67. Herklots GAC (1972) Vegetables of southeast Asia. Hafner Press, New York, NY, 522 pGoogle Scholar
  68. Holm LG, Doll J, Holm E, Pancho JV, Herberger JP (1997) World Weeds: natural histories and distribution. John Wiley & Sons Inc, New York, NYGoogle Scholar
  69. Hu M, Skibsted LH (2002) Antioxidative capacity of rhizome extract and rhizome knot extract of edible lotus (Nelumbo nucifera). Food Chem 76:327–333CrossRefGoogle Scholar
  70. Huda-Faujan N, Noriham A, Norrakiah AS, Babji AS (2007) Antioxidant activities of water extracts of some Malaysian herbs. ASEAN Food J 14:61–68Google Scholar
  71. Hummel M, Kiviat A (2004) Review of world literature on water chestnut with implications for management in North America. J Aquat Plant Manage 42:17–28Google Scholar
  72. Huxley A (1992) The new RHS dictionary of gardening. Oxford, London, MacMillan PressGoogle Scholar
  73. Irudayaraj V (2011) Ceratopteris thalictroides. The IUCN red list of threatened species 2011.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168862A6541936.en
  74. Jain A, Roshnibala S, Kanjilal PB, Singh RS, Singh HB (2007) Aquatic/semi aquatic-plants used in herbal remedies in the wetlands of Manipur, Northeastern India. Indian J Tradit Know 6:346–351Google Scholar
  75. Jansen PCM (2004) Alternanthera sessilis (L.) DC. Record from PROTA4U. In: GJH G, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale). Wageningen, NetherlandsGoogle Scholar
  76. Jeffries M, Mills D (1992) Freshwater ecology: principles and applications. CBS Publishers, New Delhi, IndiaGoogle Scholar
  77. Jiang WL, Luo XL, Kuang SJ (2005) Effects of Alternanthera philoxeroides Griseb against dengue virus in vitro. J First Mil Med Univ 25:454–456Google Scholar
  78. Jianqing D, Wang R, Fu W, Zhang G (2001) Water hyacinth in China: its distribution, problems and control status. In: Julien MH, Hill MP, Center TD, Jianqing D (eds) Biological and integrated control of water hyacinth, Eichhornia crassipes. ACIAR Proceedings, No. 102. ACIAR, Canberra, Australia, pp 32–29Google Scholar
  79. Jimenez-Escrig A, Sanchez-Muniz FJ (2000) Dietary fiber from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 20:585–598CrossRefGoogle Scholar
  80. Jirarat T, Sukruedee A, Pasawadee P (2006) Chemical and physical properties of flour extracted from Taro Colocasia esculenta (L) Schott grown in different regions of Thailand. ScienceAsia 32:279–284CrossRefGoogle Scholar
  81. Joshi HV, Patel RS (2012) “Studies on the physico-chemical status of two lakes Deliya Lake and Malap Lake, under biotic stress” of Visnagar Taluka in Mehsana District, Gujarat, India. IJSRP 2:1–8CrossRefGoogle Scholar
  82. Jung HA, Gim JE, Chung HY, Choi JS (2003) Antioxidant principles of Nelumbo nucifera stamens. Arch Pharm Res 26:279–285PubMedCrossRefGoogle Scholar
  83. Justice WS, Bell CR, Lindsey AH (2005) Wild flowers of North Carolina. Univ. of North Carolina Press, Chapel Hill, NC, p 255Google Scholar
  84. Kam MYY, Chai LC, Chin CF (2016) The biology and in vitro propagation of the ornamental aquatic plant, Aponogeton ulvaceus. Springerplus 5:1657PubMedPubMedCentralCrossRefGoogle Scholar
  85. Karataş M, Aasim M (2015) In vitro whole plant regeneration of medicial aquatic plant-Limnophilla aromatica. Fresen Environ Bull 24:2747–2750Google Scholar
  86. Karg S (2006) The water chestnut (Trapa natans L.) as a food resource during the fourth to first millennia BC at Lake Federsee, Bad Bucha (Southern Germany). Environ Archaeol 11:125–130CrossRefGoogle Scholar
  87. Kristener J (2013) Permaculture plants: Cattail, Bulrush or Reedmace. http://tcpermaculture.com/site/2013/08/19/permaculture-plants-cattail-or-bulrush/
  88. Kuhnlein HV, Turner NJ (1991) Traditional plant foods of Canadian Indigeneous people: nutrition, botany and use. In: Katz SH (ed) Food and nutrition in history and anthroplogy. Gordon and Beach Science Publishers, PhidelphiaGoogle Scholar
  89. Langeland KA, Cherry HM, McCormick CM, Craddock Burks KA (2008) Identification and biology of non-native plants in Florida’s natural areas. University of Florida IFAS Extension, Gainesville, FLGoogle Scholar
  90. Lansdown RV (2014) Sagittaria sagittifolia. The IUCN red list of threatened species 2014.  https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T167821A43126944.en
  91. Les DH, Moody ML, Jacobs SWL (2005) Phylogeny and systematics of Aponogeton (Aponogetonaceae): the Australian species. Syst Bot 30:503–551CrossRefGoogle Scholar
  92. Lewmanomont K (1978). Some edible algae of Thailand. Sixteenth national conference on agriculture and biological sciences, Kasetsart University, Bangkok. 22 p.Google Scholar
  93. Lindsey K, Hirt HM (1999) Use water hyacinth! A practical handbook of uses for the water hyacinth from across the World. Anamed, Winnenden, p 114Google Scholar
  94. Lowry D (2005) The consumer’s guide to Sushi: Everything you need to know about Sushi. The Harvard Common Press, Boston, MA, p 205Google Scholar
  95. Luca LM, Norum KR (2011) Scurvy and cloudberries: a chapter in the history of nutritional sciences. J Nutr 141:2101–2105PubMedCrossRefGoogle Scholar
  96. Mahesh M (2010) Diversity of pteridophytes along the stretches of Thamiraparani River (West), Kanyakumari, Tamil Nadu, India. Department of Botany, Nesemani Memorial Christian College, Manonmaniam Sundaranar University.Google Scholar
  97. Manandhar PA (2002) Plants and people of Nepal. Timber Press Oregon, Portland, OregonGoogle Scholar
  98. Manickam VS, Irudayaraj V (1992) Pteridophyte flora of the Western Ghats: South India. B.I. Publications, New DelhiGoogle Scholar
  99. Manner HI (2011) Farm and forestry production and marketing profile for Tannia (Xanthosoma spp). In: Elevitch CR (ed) Specialty crops for Pacific Island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawaii, pp 1–16Google Scholar
  100. Martinez-Sanchez A, Gil-Izquierdo A, Gil MI, Ferreres F (2008) A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J Agric Food Chem 56:2330–2340PubMedCrossRefGoogle Scholar
  101. Mazumdar BC (1985) Water chestnut-the aquatic fruit. Agri Int Series 32:42–44Google Scholar
  102. Mehta NR, Patel EP, Patan PV, Shah B (2013) Nelumbo Nucifera (Lotus): a review on ethanobotany, phytochemistry and pharmacology. IJPBR 1:152–167CrossRefGoogle Scholar
  103. Mohd Ilham A (1998) Opportunities on the planting of medicinal and herbal plants in Malaysia. Planter 74:339–342Google Scholar
  104. Montoya JE, Waliczek TM, Abbott ML (2013) Large scale composting as a means of managing water hyacinth (Eichhornia crassipes). Inv Plant Sci Man 6:243–249CrossRefGoogle Scholar
  105. Muhlberg H (1982) Complete guide to water plants. E.P. Publishing Ltd., Leipzig, GermanyGoogle Scholar
  106. Munasinghe JU, Dilhan MAAB, Sundarabarathy TV (2009) Utilization of aquatic plants: a method to enhance the productivity of water in seasonal tanks in the Anuradhapura district. Proceedings of the national conference on water, food security and climate change in Sri Lanka, BMICH, Colombo, 9–11 June, 2009Google Scholar
  107. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci 62:923–926CrossRefGoogle Scholar
  108. Nayar BK, Geevarghese KK (1993) Fern flora of Malabar. Indus Publishing Co., New DelhiGoogle Scholar
  109. Ndimele PE, Ndimele CC (2013) Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms). Int J Environ studies 70:241–258CrossRefGoogle Scholar
  110. Norrington N (2001) Tropical food gardens. Bloomings Books, Melbourne, AustraliaGoogle Scholar
  111. O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Lawlor PG, Hughes H, Gardiner GE (2010) Prebiotics from marine macro-algae for human and animal health applicatons. Mar Drugs 8:2038–2064PubMedPubMedCentralCrossRefGoogle Scholar
  112. Oelke EA (1993) Wild rice: domestication of a native North American genus. In: Janick J, Simon JE (eds) New crops. John Wiley and Sons, New York, NY, pp 235–243Google Scholar
  113. Ogle BM, Dao HT, Mulokozi G, Hambraeus L (2001) Micronutrient composition and nutritional importance of gathered vegetables in Vietnam. Int J Food Sci Nutr 52:485–499PubMedCrossRefGoogle Scholar
  114. Oke OL (1990) Roots, tubers, plantains and bananas in human nutrition. FAO Corporate Documentary Repository, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  115. Onwueme I (1999) Taro cultivation in Asia and the Pacific. Bangkok, Thailand: Food and Agriculture Organization of the United Nations. Regional Office for Asia and the Pacific, 15 pp. [FAO Report.]Google Scholar
  116. Opara LU (2001) Edible aroids: post harvest operations AGST/FAOGoogle Scholar
  117. Oudhia P (2001) Traditional medicinal knowledge about a noxious weed, jal kumbhi (Eichhornia crassipes), in Chhattisgarh (India). Aquaphyte 21(2)Google Scholar
  118. Park NI, Kim JK, Park WT, Cho JW, Lim YP, Park SU (2011) An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Mol Biol Rep 38:4947–4953PubMedCrossRefGoogle Scholar
  119. Parsons WT, Cuthbertson EG (1992) Noxious wees of Australia. Inkata Press, Melbourne, Australia, p 692Google Scholar
  120. Paudel KR, Panth N (2015) Phytochemical profile and biological activity of Nelumbo nucifera. J Evid Based Complementary Altern Med 2015:789124Google Scholar
  121. Pemberton RW (1999) Natural enemies of Trapa spp. in northeast Asia and Europe. Biol Control 14:168–180CrossRefGoogle Scholar
  122. Pemberton RW (2000) Water blommetjie (Aponogeton distachyos, Aponogetonaceae), a recently domesticated aquatic food crop in Cape South Africa with unusual origins. Econ Bot 54:144–149CrossRefGoogle Scholar
  123. Pietryczuk A et al (2009) The effect of sodium amidotrizoate on the growth and metabolism of Wolffia arrhiza (L.) Wimm. Pol J Environ Stud 18:885–891Google Scholar
  124. Polunin O (1969) Flowers of Europe—a field guide. Oxford University Press, Oxford, LondonGoogle Scholar
  125. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefGoogle Scholar
  126. Punturee K, Wild CP, Vinitketkumneun U (2004) Thai medicinal plants modulate nitric oxide and tumor necrosis factor-alpha in J774.2 mouse macrophages. J Ethnopharmacol 95:183–189PubMedCrossRefGoogle Scholar
  127. Qasim R, Barkati S (1985) Ascorbic acid and dehydroascorbic acid contents of marine algal species from Karachi Pakistan. J Sci Ind Res 28:129–133Google Scholar
  128. Rai S, Mukherjee AK, Saha BP, Mukherjee PK (2005) Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 104:322–327PubMedCrossRefGoogle Scholar
  129. Ramachandra TV, Alakananda B, Supriya G (2015) Efficacy of current restoration approaches: Bangalore wetlands, ENVIS Technical Report 73. CES, Indian Institute of Science, BangaloreGoogle Scholar
  130. Reid BE (1977) Famine foods of the Chiu-Huang Pen-ts’ao. Southern Materials Centre, TaipeiGoogle Scholar
  131. Rose P, Faulkner K, Williamson G, Mithen R (2000) 7-Methylsulfinylheptyl and 8-methylsulfinyloctyl isothiocyanates from watercress are potent inducers of phase II enzymes. Carcinogenesis 21:1983–1988PubMedCrossRefGoogle Scholar
  132. Rossano R, Ungaro N, D’Ambrosio A, Liuzzi GM, Riccio P (2003) Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 101:289–293PubMedCrossRefGoogle Scholar
  133. Round FE (1962) The biology of the algae. Edward Arnold Ltd, LondonGoogle Scholar
  134. Ruskin FR (1975) Underexploited tropical plants with promising economic value. Report of an ad hoc panel of the Advisory Committee on Technology Innovation Board on Science and Technology for International Development, Commission on International Relations. Washington, DC, National Academy of Sciences. 200 pGoogle Scholar
  135. Ruskin FR, Shipley DW (1976) Making aquatic weeds useful: some perspectives for developing countries. Ad hoc panel of the Advisory Committee on Technology Innovation Board on Science and Technology for International Development, Commission on International Relations. Washington, DC. National Academy of Sciences. 194 pGoogle Scholar
  136. Safo-Kantaka O (2004) ColocAsia esculenta (L.) Schott. Record from protabase. In: Grubben GJH, Denton OA (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l'Afrique tropicale). Wageningen, Netherlands. http://database.prota.org/search.htm Google Scholar
  137. Saini DC, Singh SK, Rai K (2010) Biodiversity of aquatic and semi-aquatic plants of Uttar Pradesh (with special reference to eastern Uttar Pradesh). Uttar Pradesh State Biodiversity Board, Lucknow, p 479Google Scholar
  138. Salvador N, Garreta AG, Lavelli L, Ribera MA (2007) Antimicrobial activity of an Iberian macro-algae. Sci Mar 71:101–113CrossRefGoogle Scholar
  139. Scher J (2004) Federal noxious weed disseminules of the U.S. Center for Plant Health Science and Technology, Plant Protection and Quarantine, Animal and Plant Health Inspection Service, U.S. Dept. Agric. http://www.lucidcentral.org
  140. Schultes RE (1976) A golden guide to hallucinogenic plants. Golden Press, New York, NY, p 73Google Scholar
  141. Shankar LH, Mishra PK (2012) Study of aquatic medicinal plants of Hazaribag District of Jharkand, India. IRJP 3:405–409Google Scholar
  142. Simoons FJ (1991) Food in China: a cultural and historical inquiry. CRC Press, Boca Raton, p 559Google Scholar
  143. Singh A, Kandasamy T, Odhav B (2009) In vitro propagation of Alternanthera sessilis (sessile joy weed), a famine food plant. Afr J Biotechnol 8:5691–5695CrossRefGoogle Scholar
  144. Solibami VJ, Kamat SY (1985) Distribution of tocopheral (Vitamin E) in marine algae from Goa, West Coast of India. Ind J Marine Sci 14:228–229Google Scholar
  145. Spurgeon T (1996) Wapato (Sagittaria latifolia) in Katzie traditional territory. Simon Fraser University, Pitt Mesadow, BCGoogle Scholar
  146. Surendiran G, Goh C, Le K, Zhao Z, Askarian F, Othman R, Nicholson T, Moghadasian P, Wang YJ, Aliani M, Shen G, Beta T, Moghadasian MH (2013) Wild rice (Zizania palustris L.) prevents atherogenesis in LDL receptor knockout mice. Atherosclerosis 230:284–292PubMedCrossRefGoogle Scholar
  147. Swapna MM, Prakashkumar R, Anoop KP, Manju CN, Rajith NP (2011) A review on the medicinal and edible aspects of aquatic and wetland plants of India. J Med Plant Res 5:7163–7176CrossRefGoogle Scholar
  148. Swearingen J, Bargeron C (2016) Invasive plant atlas of the United States. University of Georgia Center for Invasive Species and Ecosystem Health. http://www.invasiveplantatlas.org/
  149. Tanaka Y, Nguyen VK (2007) Edible wild plants of Vietnam: the bountiful garden. Orchid Press, Thailand, p 108Google Scholar
  150. Tardío J, Pascual H, Morales R (2005) Wild food plants traditionally used in the Province of Madrid, central Spain. Econ Bot 59:122–136CrossRefGoogle Scholar
  151. Tarnalli A, Cheeramkuzhy T (2000) Influence of Clitoriaternateaextracts on memory and central cholinergicactivity in rats. Pharm Biol 38:51–56CrossRefGoogle Scholar
  152. Top M, Ashcroft B (2002) Water Spinach (KangKong), Department of Environment and Primary Industries. Melbourne, Victoria. http://agriculture.vic.gov.au/agriculture/horticulture/vegetables/vegetables-a-z/growing-water-spinach-kangkong
  153. Uto T, Hou D, Morinaga O, Shoyama Y (2012) Molecular mechanisms underlying anti-inflammatory actions of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabi (Wasabia japonica). Adv Pharm Sci 2012:614046Google Scholar
  154. Van Dan N, Nhu DT (1989) Medicinal plants in Vietnam. World Health OrganizationGoogle Scholar
  155. Vennum T (1999) Traditional and social context of ricing. Proceedings of the Wild Rice Research & Management ConferenceGoogle Scholar
  156. Verma S, Singh N (2012) In vitro mass multiplication of Acorus calamus L.—an endangered medicinal plant. Am EurAsian J Agric Environ Sci 12:1514–1521Google Scholar
  157. Vishnu SN, Muthukrishnan S, Vinaiyaka MH, Muthulekshmi LJ, Raj SM, Syamala SV, Mithun R (2012) Genetic diversity of phytophthora colocasiae isolates in India based on AFLP analysis. 3 Biotech 3:297–305Google Scholar
  158. Vo CV (1999) Dictionary of medicinal plants in Vietnam. Medicine Publishing House, Hanoi, Vietnam, p 58Google Scholar
  159. Wahab ASA, Ismail SNS, Emilia ZA, Praveena SM (2014) Neptunia oleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv Environ Biol 8:187–194Google Scholar
  160. Wang H, Cao G, Prior RL (1996) Total antioxidant capacity of fruits. J Agric Food Chem 44:701–705CrossRefGoogle Scholar
  161. Wang X, Wu N, Guo J, Chu X, Tian J, Yao B, Fan Y (2008) Phytodegradation of organophosphoruscompounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Res Commun 365:453–458PubMedCrossRefGoogle Scholar
  162. Ware M (2016) Watercress: health benefits and nutritional breakdown. http://www.medicalnewstoday.com/articles/285412.php
  163. Watanebe F, Takenaka S, Katsura H, Zakir Hussain Masumder SAM, Abe K, Tamura Y, Nakano Y (1999) Dried green and purple lavers (Nori) contain substantial amounts of biologically active Vitamin B12 but less of dietary iodine relative to other edible seaweeds. J Agric Food Chem 47:2341–2343CrossRefGoogle Scholar
  164. Waterhouse BM, Hucks L (2002) Limnocharis flava, Mikania micrantha and Clidemia hirta detected in north Queensland: are these weeds lurking at a site near you? Thirteenth Australian Weeds Conference: weeds ‘threats now and forever’. 8–13 Sep, Perth, Western AutraliaGoogle Scholar
  165. Westbrooks R (1989) Regulatory exclusion of Federal Noxious Weeds from the United States. Ph.D. Dissertation. Department of Botany, North Carolina State University, Raleigh, North CarolinaGoogle Scholar
  166. Wu MJ, Wang L, Weng CY, Yen JH (2003) Antioxidant activity of methanol extract of the lotus leaf (Nelumbo nucifera Gaertn.) Am J Chin Med 31:687–698PubMedCrossRefGoogle Scholar
  167. Yan X, Chuda Y, Suzuki M, Nagata T (1999) Fucoxanthin as a major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63:605–607PubMedCrossRefGoogle Scholar
  168. Yazdanparast R, Bahramikia S, Ardestani A (2008) Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chem Biol Interact 172:176–184PubMedCrossRefGoogle Scholar
  169. Zainol NA, Voo SC, Sarmidi MR, Aziz RA (2008) Profiling of Centella Asiatica (L.) urban extract. MJAS 12:322–327Google Scholar
  170. Zhuang X (2011) Vallisneria natans. The IUCN red list of threatened species.  https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T168709A6528459.en
  171. Zvelebil M (1986) Postglacial foraging in the forests of Europe. Sci Am 254:86–92CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Aasim
    • 1
  • Allah Bakhsh
    • 2
  • Muhammed Sameeullah
    • 3
  • Mehmet Karataş
    • 1
  • Khalid Mahmood Khawar
    • 4
  1. 1.Department of Biotechnology, Faculty of ScienceNecmettin Erbakan UniversityKonyaTurkey
  2. 2.Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and TechnologiesNigde Omer Halis Demir UniversityNigdeTurkey
  3. 3.Department of Horticulture, Faculty of Agricultural and Natural ScienceAbant Izzet Baysal UniversityBoluTurkey
  4. 4.Department of Field Crops, Faculty of AgricultureAnkara UniversityDiskapiTurkey

Personalised recommendations