Glutamine Metabolism in Cancer

  • Ting Li
  • Anne LeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1063)


Metabolism is the fundamental process for all cellular functions. For decades, there has been growing evidence with regard to the relationship between metabolism and malignant cell proliferation. Unlike normal differentiated cells, however, cancer cells have reprogrammed metabolisms in order to fulfill their energy requirements. These cells display crucial modifications in many metabolic pathways, including glucose transport, glutaminolysis which includes the tricarboxylic acid (TCA) cycle, the electron transport chain (ETC), and the pentose phosphate pathway (PPP) [1]. Since the discovery of the Warburg effect, it has been shown that the metabolism of cancer cells plays a critical role in cancer survival and growth. More recent research suggests that the involvement of glutamine in cancer metabolism is more significant than previously thought. Glutamine, a non essential amino acid with an amine functional group, is the most abundant amino acid circulating in the bloodstream [2]. This chapter will discuss the characteristic features of glutamine metabolism in cancers.


Glutamine metabolism Glutamine addiction Targeting glutamine metabolism Transaminase upregulation Targeting amino acid synthesis 





2-Hydroxyglutaric acid


Argininosuccinate synthetase


Epicatechin gallate


Epigallocatechin gallate


Electron transport chain


Fluorodeoxyglucose-positron emission tomography


Fumarate hydratase


Glioblastoma multiforme


Glutamate dehydrogenase




Glutamic-oxaloacetic transaminase


Glutamic-pyruvate transaminase


Hypoxia-inducible factor


Isocitrate dehydrogenase




Poly(ethylene glycol)


Prolyl 4-hydroxylases


Poly(lactic-co-glycolic acid)


Phosphoserine aminotransferase


Renal cell carcinomas


Succinate dehydrogenase


Serine hydroxymethyltransferase


Tricarboxylic acid




  1. 1.
    Chen, J. Q., & Russo, J. (2012). Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochimica et Biophysica Acta, 1826(2), 370–384.PubMedGoogle Scholar
  2. 2.
    Scriver, C. R., & Rosenberg, L. (1973). Amino acid metabolism and its disorders (Vol. 10). Philadelphia: WB Saunders.Google Scholar
  3. 3.
    Berg, J. M., Tymoczko, J. L., & Stryer, L. (2012). Biochemistry (7th ed.). New York: W.H. Freeman. xxxii, 1054, 43, 41, 48 p.Google Scholar
  4. 4.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Akram, M. (2014). Citric acid cycle and role of its intermediates in metabolism. Cell Biochemistry and Biophysics, 68(3), 475–478.CrossRefPubMedGoogle Scholar
  6. 6.
    Cardaci, S., & Ciriolo, M. R. (2012). TCA cycle defects and cancer: When metabolism tunes redox state. Int J Cell Biol, 2012, 161837.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Laurenti, G., & Tennant, D. A. (2016). Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): Three players for one phenotype in cancer? Biochemical Society Transactions, 44(4), 1111–1116.CrossRefPubMedGoogle Scholar
  9. 9.
    Bardella, C., Pollard, P. J., & Tomlinson, I. (2011). SDH mutations in cancer. Biochimica et Biophysica Acta, 1807(11), 1432–1443.CrossRefPubMedGoogle Scholar
  10. 10.
    Baysal, B. E., et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science, 287(5454), 848–851.CrossRefGoogle Scholar
  11. 11.
    Baysal, B. E., et al. (2002). Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas. Journal of Medical Genetics, 39(3), 178–183.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Burnichon, N., et al. (2010). SDHA is a tumor suppressor gene causing paraganglioma. Human Molecular Genetics, 19(15), 3011–3020.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ricketts, C., et al. (2008). Germline SDHB mutations and familial renal cell carcinoma. Journal of the National Cancer Institute, 100(17), 1260–1262.CrossRefPubMedGoogle Scholar
  14. 14.
    Zantour, B., et al. (2004). A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene. European Journal of Endocrinology, 151(4), 433–438.CrossRefPubMedGoogle Scholar
  15. 15.
    Cascon, A., et al. (2008). Molecular characterisation of a common SDHB deletion in paraganglioma patients. Journal of Medical Genetics, 45(4), 233–238.CrossRefPubMedGoogle Scholar
  16. 16.
    Tomlinson, I. P., et al. (2002). Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nature Genetics, 30(4), 406–410.CrossRefPubMedGoogle Scholar
  17. 17.
    Shanmugasundaram, K., et al. (2014). The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-kappaB signaling. The Journal of Biological Chemistry, 289(35), 24691–24699.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dang, L., et al. (2010). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 465(7300), 966.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Parsons, D. W., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yan, H., et al. (2009). IDH1 and IDH2 mutations in gliomas. The New England Journal of Medicine, 360(8), 765–773.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ward, P. S., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell, 17(3), 225–234.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Still, E. R., & Yuneva, M. O. (2017). Hopefully devoted to Q: Targeting glutamine addiction in cancer. British Journal of Cancer, 116(11), 1375–1381.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    DeBerardinis, R. J., & Cheng, T. (2010). Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3), 313–324.CrossRefPubMedGoogle Scholar
  24. 24.
    Mullen, A. R., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481(7381), 385–U171.CrossRefGoogle Scholar
  25. 25.
    Gameiro, P. A., et al. (2013). In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metabolism, 17(3), 372–385.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dang, L., et al. (2009). Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature, 462(7274), 739–U52.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Seltzer, M. J., et al. (2010). Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Research, 70(22), 8981–8987.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ma, W. W., et al. (2009). [F-18]Fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. Journal of Clinical Oncology, 27(16), 2697–2704.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ploessl, K., et al. (2012). Comparative evaluation of 18F-labeled glutamic acid and glutamine as tumor metabolic imaging agents. Journal of Nuclear Medicine, 53(10), 1616–1624.CrossRefPubMedGoogle Scholar
  30. 30.
    Jeong, S. M., et al. (2016). Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition. Scientific Reports, 6, 30767.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Owen, O. E., Kalhan, S. C., & Hanson, R. W. (2002). The key role of anaplerosis and cataplerosis for citric acid cycle function. The Journal of Biological Chemistry, 277(34), 30409–30412.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Umapathy, N. S., et al. (2008). Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells. Investigative Ophthalmology & Visual Science, 49(11), 5151–5160.CrossRefGoogle Scholar
  33. 33.
    Wu, G., et al. (2004). Glutathione metabolism and its implications for health. The Journal of Nutrition, 134(3), 489–492.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang, L., et al. (2016). Reactive oxygen species and targeted therapy for pancreatic cancer. Oxidative Medicine and Cellular Longevity, 2016, 1616781.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Elgogary, A., et al. (2016). Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 113(36), E5328–E5336.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Le, A., et al. (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metabolism, 15(1), 110–121.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Erickson, J. W., & Cerione, R. A. (2010). Glutaminase: A hot spot for regulation of cancer cell metabolism? Oncotarget, 1(8), 734–740.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Altman, B. J., Stine, Z. E., & Dang, C. V. (2016). From Krebs to clinic: Glutamine metabolism to cancer therapy. Nature Reviews. Cancer, 16(11), 749.CrossRefPubMedGoogle Scholar
  39. 39.
    Colombo, S. L., et al. (2011). Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 21069–21074.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hu, W., et al. (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7455–7460.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wise, D. R., et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18782–18787.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gao, P., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zilfou, J. T., & Lowe, S. W. (2009). Tumor suppressive functions of p53. Cold Spring Harbor Perspectives in Biology, 1(5), a001883.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Matoba, S., et al. (2006). p53 regulates mitochondrial respiration. Science, 312(5780), 1650–1653.CrossRefGoogle Scholar
  45. 45.
    Sablina, A. A., et al. (2005). The antioxidant function of the p53 tumor suppressor. Nature Medicine, 11(12), 1306–1313.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Wang, J. B., et al. (2010). Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 18(4), 397.CrossRefGoogle Scholar
  47. 47.
    Wang, J. B., et al. (2010). Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 18(3), 207–219.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Robinson, M. M., et al. (2007). Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). The Biochemical Journal, 406(3), 407–414.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gross, M. I., et al. (2014). Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Molecular Cancer Therapeutics, 13(4), 890–901.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Willis, R. C., & Seegmiller, J. E. (1977). The inhibition by 6-diazo-5-oxo-l-norleucine of glutamine catabolism of the cultured human lymphoblast. Journal of Cellular Physiology, 93(3), 375–382.CrossRefPubMedGoogle Scholar
  51. 51.
    Elgadi, K. M., et al. (1999). Cloning and analysis of unique human glutaminase isoforms generated by tissue-specific alternative splicing. Physiological Genomics, 1(2), 51–62.CrossRefPubMedGoogle Scholar
  52. 52.
    Shukla, K., et al. (2012). Design, synthesis, and pharmacological evaluation of bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide 3 (BPTES) analogs as glutaminase inhibitors. Journal of Medicinal Chemistry, 55(23), 10551–10563.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Niu, Z., et al. (2015). Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochimica et Biophysica Sinica, 47(3), 183–191.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang, X., Ge, Y. L., & Tian, R. H. (2009). The knockdown of c-myc expression by RNAi inhibits cell proliferation in human colon cancer HT-29 cells in vitro and in vivo. Cellular & Molecular Biology Letters, 14(2), 305–318.CrossRefGoogle Scholar
  55. 55.
    Lukey, M. J., Katt, W. P., & Cerione, R. A. (2017). Targeting amino acid metabolism for cancer therapy. Drug Discovery Today, 22(5), 796–804.CrossRefPubMedGoogle Scholar
  56. 56.
    Jin, L., Alesi, G. N., & Kang, S. (2016). Glutaminolysis as a target for cancer therapy. Oncogene, 35(28), 3619–3625.CrossRefPubMedGoogle Scholar
  57. 57.
    Son, J., et al. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 496(7443), 101–105.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Li, C., et al. (2006). Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. The Journal of Biological Chemistry, 281(15), 10214–10221.CrossRefPubMedGoogle Scholar
  59. 59.
    Li, C., et al. (2011). Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. The Journal of Biological Chemistry, 286(39), 34164–34174.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Yang, C. S., et al. (2009). Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer, 9(6), 429–439.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Li, M., et al. (2009). Novel inhibitors complexed with glutamate dehydrogenase: Allosteric regulation by control of protein dynamics. Journal of Biological Chemistry, 284(34), 22988–23000.CrossRefPubMedGoogle Scholar
  62. 62.
    Yang, C. D., et al. (2009). Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Research, 69(20), 7986–7993.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ollenschläger, G., et al. (1988). Asparaginase-induced derangements of glutamine-metabolism - the pathogenetic basis for some drug-related side-effects. European Journal of Clinical Investigation, 18(5), 512–516.CrossRefPubMedGoogle Scholar
  64. 64.
    Wu, M. C., Arimura, G. K., & Yunis, A. A. (1978). Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. International Journal of Cancer, 22(6), 728–733.CrossRefPubMedGoogle Scholar
  65. 65.
    Lukey, M. J., Wilson, K. F., & Cerione, R. A. (2013). Therapeutic strategies impacting cancer cell glutamine metabolism. Future Medicinal Chemistry, 5(14), 1685–1700.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Grigoryan, R. S., et al. (2004). Changes of amino acid serum levels in pediatric patients with higher-risk acute lymphoblastic leukemia (CCG-1961). In Vivo, 18(2), 107–112.PubMedGoogle Scholar
  67. 67.
    Nguyen, H. A., Su, Y., & Lavie, A. (2016). Structural insight into substrate selectivity of Erwinia chrysanthemi L-asparaginase. Biochemistry, 55(8), 1246–1253.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ertel, I. J., et al. (1979). Effective dose of L-asparaginase for induction of remission in previously treated children with acute lymphocytic leukemia: A report from Childrens Cancer Study Group. Cancer Research, 39(10), 3893–3896.PubMedGoogle Scholar
  69. 69.
    Panosyan, E. H., et al. (2014). Asparagine depletion potentiates the cytotoxic effect of chemotherapy against brain tumors. Molecular Cancer Research, 12(5), 694–702.CrossRefPubMedGoogle Scholar
  70. 70.
    Stams, W. A., et al. (2003). Sensitivity to L-asparaginase is not associated with expression levels of asparagine synthetase in t(12;21)+ pediatric ALL. Blood, 101(7), 2743–2747.CrossRefPubMedGoogle Scholar
  71. 71.
    Thibault, A., et al. (1994). A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Research, 54(7), 1690–1694.PubMedGoogle Scholar
  72. 72.
    Darmaun, D., et al. (1998). Phenylbutyrate-induced glutamine depletion in humans: Effect on leucine metabolism. The American Journal of Physiology, 274(5 Pt 1), E801–E807.PubMedGoogle Scholar
  73. 73.
    Fuchs, B. C., & Bode, B. P. (2005). Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime? Seminars in Cancer Biology, 15(4), 254–266.CrossRefPubMedGoogle Scholar
  74. 74.
    Hassanein, M., et al. (2013). SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival. Clinical Cancer Research, 19(3), 560–570.CrossRefPubMedGoogle Scholar
  75. 75.
    Ahluwalia, G. S., et al. (1990). Metabolism and action of amino-acid analog anticancer agents. Pharmacology & Therapeutics, 46(2), 243–271.CrossRefGoogle Scholar
  76. 76.
    Thangavelu, K., et al. (2014). Structural basis for the active site inhibition mechanism of human kidney-type glutaminase (KGA). Scientific Reports, 4, 3827.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ortlund, E., et al. (2000). Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry, 39(6), 1199–1204.CrossRefPubMedGoogle Scholar
  78. 78.
    Ovejera, A. A., et al. (1979). Efficacy of 6-diazo-5-oxo-L-norleucine and N-[N-gamma-glutamyl-6-diazo-5-oxo-norleucinyl]-6-diazo-5-oxo-norleucine against experimental tumors in conventional and nude mice. Cancer Research, 39(8), 3220–3224.PubMedGoogle Scholar
  79. 79.
    Beuster, G., et al. (2011). Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to impair malignant growth. The Journal of Biological Chemistry, 286(25), 22323–22330.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thornburg, J. M., et al. (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Research, 10(5), R84.CrossRefPubMedGoogle Scholar
  81. 81.
    Possemato, R., et al. (2011). Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360), 346–350.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wu, G., & Morris, S. M., Jr. (1998). Arginine metabolism: Nitric oxide and beyond. The Biochemical Journal, 336(Pt 1), 1–17.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kobayashi, E., et al. (2010). Reduced argininosuccinate synthetase is a predictive biomarker for the development of pulmonary metastasis in patients with osteosarcoma. Molecular Cancer Therapeutics, 9(3), 535–544.CrossRefPubMedGoogle Scholar
  84. 84.
    Ananieva, E. (2015). Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Journal of Biological Chemistry, 6(4), 281–289.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Grohmann, U., & Bronte, V. (2010). Control of immune response by amino acid metabolism. Immunological Reviews, 236, 243–264.CrossRefPubMedGoogle Scholar
  86. 86.
    Godin-Ethier, J., et al. (2011). Indoleamine 2,3-dioxygenase expression in human cancers: Clinical and immunologic perspectives. Clinical Cancer Research, 17(22), 6985–6991.CrossRefPubMedGoogle Scholar
  87. 87.
    Mellor, A. L., & Munn, D. H. (1999). Tryptophan catabolism and T-cell tolerance: Immunosuppression by starvation? Immunology Today, 20(10), 469–473.CrossRefPubMedGoogle Scholar
  88. 88.
    Uyttenhove, C., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 9(10), 1269–1274.CrossRefPubMedGoogle Scholar
  89. 89.
    Ino, K., et al. (2008). Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: Its association with disease progression and survival. Clinical Cancer Research, 14(8), 2310–2317.CrossRefPubMedGoogle Scholar
  90. 90.
    Moon, Y. W., et al. (2015). Targeting the indoleamine 2,3-dioxygenase pathway in cancer. Journal for Immunotherapy of Cancer, 3, 51.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Beatty, G. L., et al. (2013). A phase I study of an agonist CD40 monoclonal antibody (CP-870,893) in combination with gemcitabine in patients with advanced pancreatic ductal adenocarcinoma. Clinical Cancer Research, 19(22), 6286–6295.CrossRefPubMedGoogle Scholar
  92. 92.
    Soliman, H. H., et al. (2016). A phase I study of indoximod in patients with advanced malignancies. Oncotarget, 7(16), 22928–22938.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pilotte, L., et al. (2012). Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2497–2502.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Amelio, I., et al. (2014). Serine and glycine metabolism in cancer. Trends in Biochemical Sciences, 39(4), 191–198.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    DeBerardinis, R. J. (2011). Serine metabolism: Some tumors take the road less traveled. Cell Metabolism, 14(3), 285–286.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pollari, S., et al. (2011). Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Research and Treatment, 125(2), 421–430.CrossRefPubMedGoogle Scholar
  97. 97.
    Dang, C. V. (2012). MYC on the path to cancer. Cell, 149(1), 22–35.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Nikiforov, M. A., et al. (2002). A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Molecular and Cellular Biology, 22(16), 5793–5800.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    di Salvo, M. L., et al. (2013). Glycine consumption and mitochondrial serine hydroxymethyltransferase in cancer cells: The heme connection. Medical Hypotheses, 80(5), 633–636.CrossRefPubMedGoogle Scholar
  100. 100.
    Jain, M., et al. (2012). Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336(6084), 1040–1044.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Daidone, F., et al. (2011). In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. European Journal of Medicinal Chemistry, 46(5), 1616–1621.CrossRefPubMedGoogle Scholar
  102. 102.
    Maddocks, O. D., et al. (2013). Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature, 493(7433), 542–546.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Pathology and OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations