Advertisement

Glucose Metabolism in Cancer

  • Sminu Bose
  • Anne Le
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1063)

Abstract

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate [1]. The significance of this finding, later termed the Warburg effect, went unnoticed by the larger scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics which would later open the doors to new cancer therapies.

Keywords

Glucose metabolism Warburg effect Glycogenolysis Gluconeogenesis Cancer metabolism 

Abbreviations

3PO

3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one

AGL

Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase

AKT

Also known as PKB, protein kinase B

ATP

Adenosine triphosphate

CP-320626

5-Chloro-N-[(2S)-3-(4-fluorophenyl)-1-(4-hydroxypiperidin-1-yl)-1-oxopropan-2-yl]-1H-indole-2-carboxamide

F1,6-BP

Fructose-1,6-bisphosphatase

F2,6-BP

Fructose-2,6-bisphosphate

FX-11

3-Dihydroxy-6-methyl-7-phenylmethyl-4-propylnaphthalene-1-carboxylic acid

G1P

Glucose-1-phosphate

G6P

Glucose-6-phosphate

GBE

1,4-Alpha-glucan branching enzyme

GLUT

Glucose transporter

GSK2

Glycogen synthase kinase 2

GYS1

Glycogen synthase 1

HIF-1α

Hypoxia-inducible factor 1α

HK2

Hexokinase 2

LDHA

Lactate dehydrogenase A

mTOR

Mechanistic target of rapamycin

NAD

Nicotinamide adenine dinucleotide

PCK2

Phosphoenolpyruvate carboxykinase 2

PCK1

Phosphoenolpyruvate carboxykinase 1

PFK

Phosphofructokinase

PFKFB3

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

PGM

Phosphoglucomutase

PI3K

Phosphoinositide 3-kinase

PPP

Pentose phosphate pathway

PPP1R3C

Protein phosphatase 1 regulatory subunit 3C

TCA

Tricarboxylic acid

TIGAR

TP53-induced glycolysis and apoptosis regulator

TP53

Tumor protein 53

UGP2

UTP:glucose-1-P uridylyltransferase 2

VHL

Von Hippel-Lindau

References

  1. 1.
    Warburg, O. (1924). Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften, 12, 1131–1137.CrossRefGoogle Scholar
  2. 2.
    Warburg, O. (1928). Chemical constitution of respiration ferment. Science, 68(1767), 437–443.CrossRefPubMedGoogle Scholar
  3. 3.
    Cooper, G. M., & Hausman, R. E. (2009). The cell: A molecular approach (5th ed.). Washington, DC: ASM Press; Sinauer Associates. xix, 820 p.Google Scholar
  4. 4.
    Warburg, O., Wind, F., & Negelstein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.CrossRefPubMedGoogle Scholar
  5. 5.
    Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.CrossRefGoogle Scholar
  6. 6.
    Weinhouse, S. (1951). Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors. Cancer Research, 11, 585–591.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hay, N. (2016). Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nature Reviews Cancer, 16, 635–649.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine, 89(3), 205–212.CrossRefPubMedGoogle Scholar
  9. 9.
    Semenza, G. L. (2010). HIF-1: Upstream and downstream of cancer metabolism. Current Opinion in Genetics & Development, 20(1), 51–56.CrossRefGoogle Scholar
  10. 10.
    Christofk, H. R., Vander Heiden, M., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., & Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.CrossRefPubMedGoogle Scholar
  11. 11.
    Levine, A. J., & Puzio-Kuter, A. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009), 1340–1344.CrossRefPubMedGoogle Scholar
  12. 12.
    Rousset, M., Zweibaum, J., & Fogh, J. (1981). Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Research, 41(3), 1165–1170.PubMedGoogle Scholar
  13. 13.
    Cheng, K. W., et al. (2012). Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Molecular Medicine, 4(2), 125–141.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guin, S., et al. (2014). Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. Journal of the National Cancer Institute, 106(5), dju062.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shen, G.-M., et al. (2010). Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Letters, 584(20), 4366–4372.CrossRefPubMedGoogle Scholar
  16. 16.
    Pelletier, J., et al. (2012). Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Frontiers in Oncology, 2, 18–18.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zois, C. E., Favaro, E., & Harris, A. L. (2014). Glycogen metabolism in cancer. Biochemical Pharmacology, 92(1), 3–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhu, Q., et al. (2011). Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. The Prostate, 71(8), 835–845.CrossRefPubMedGoogle Scholar
  19. 19.
    Ros, S., & Schulze, A. (2012). Linking glycogen and senescence in cancer cells. Cell Metabolism, 16(6), 687–688.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang, P., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10684–10689.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khan, M., et al. (2015). mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discovery, 1, 15016.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chan, D. A., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3(94), 94ra70.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Amann, T., & Hellerbrand, C. (2009). GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 13(12), 1411–1427.CrossRefPubMedGoogle Scholar
  24. 24.
    Marin-Valencia, I., et al. (2012). Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiology of Disease, 48(1), 92–101.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sborov, D. W., Haverkos, B. M., & Harris, P. J. (2015). Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opinion on Investigational Drugs, 24(1), 79–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Heikkinen, S., et al. (1999). Hexokinase II-deficient: Mice prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. Journal of Biological Chemistry, 274(32), 22517–22523.CrossRefPubMedGoogle Scholar
  27. 27.
    Clem, B., et al. (2008). Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Molecular Cancer Therapeutics, 7(1), 110–120.CrossRefPubMedGoogle Scholar
  28. 28.
    Schoors, S., et al. (2014). Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metabolism, 19(1), 37–48.CrossRefPubMedGoogle Scholar
  29. 29.
    Wu, S., et al. (2017). Risk factors of post-operative severe hyperlactatemia and lactic acidosis following laparoscopic resection for pheochromocytoma. Scientific Reports, 7(1), 403.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Doherty, J. R., & Cleveland, J. L. (2013). Targeting lactate metabolism for cancer therapeutics. The Journal of Clinical Investigation, 123(9), 3685–3692.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koukourakis, M. I., et al. (2003). Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. British Journal of Cancer, 89(5), 877–885.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Koukourakis, M. I., et al. (2009). Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology, 77(5), 285–292.CrossRefPubMedGoogle Scholar
  33. 33.
    Koukourakis, M. I., et al. (2005). Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clinical & Experimental Metastasis, 22(1), 25–30.CrossRefGoogle Scholar
  34. 34.
    Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu, Y., et al. (2001). Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochemical Pharmacology, 62(1), 81–89.CrossRefPubMedGoogle Scholar
  36. 36.
    Vander Jagt, D. L., Deck, L. M., & Royer, R. E. (2000). Gossypol: Prototype of inhibitors targeted to dinucleotide folds. Current Medicinal Chemistry, 7(4), 479–498.CrossRefPubMedGoogle Scholar
  37. 37.
    Manerba, M., et al. (2012). Galloflavin (CAS 568-80-9): A novel inhibitor of lactate dehydrogenase. ChemMedChem, 7(2), 311–317.CrossRefPubMedGoogle Scholar
  38. 38.
    Granchi, C., et al. (2011). Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. Journal of Medicinal Chemistry, 54(6), 1599–1612.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee, W.-N. P., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91(12), 2094–2100.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Pathology and OncologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations