Glucose Metabolism in Cancer
Abstract
Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate [1]. The significance of this finding, later termed the Warburg effect, went unnoticed by the larger scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics which would later open the doors to new cancer therapies.
Keywords
Glucose metabolism Warburg effect Glycogenolysis Gluconeogenesis Cancer metabolismAbbreviations
- 3PO
3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one
- AGL
Amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase
- AKT
Also known as PKB, protein kinase B
- ATP
Adenosine triphosphate
- CP-320626
5-Chloro-N-[(2S)-3-(4-fluorophenyl)-1-(4-hydroxypiperidin-1-yl)-1-oxopropan-2-yl]-1H-indole-2-carboxamide
- F1,6-BP
Fructose-1,6-bisphosphatase
- F2,6-BP
Fructose-2,6-bisphosphate
- FX-11
3-Dihydroxy-6-methyl-7-phenylmethyl-4-propylnaphthalene-1-carboxylic acid
- G1P
Glucose-1-phosphate
- G6P
Glucose-6-phosphate
- GBE
1,4-Alpha-glucan branching enzyme
- GLUT
Glucose transporter
- GSK2
Glycogen synthase kinase 2
- GYS1
Glycogen synthase 1
- HIF-1α
Hypoxia-inducible factor 1α
- HK2
Hexokinase 2
- LDHA
Lactate dehydrogenase A
- mTOR
Mechanistic target of rapamycin
- NAD
Nicotinamide adenine dinucleotide
- PCK2
Phosphoenolpyruvate carboxykinase 2
- PCK1
Phosphoenolpyruvate carboxykinase 1
- PFK
Phosphofructokinase
- PFKFB3
6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
- PGM
Phosphoglucomutase
- PI3K
Phosphoinositide 3-kinase
- PPP
Pentose phosphate pathway
- PPP1R3C
Protein phosphatase 1 regulatory subunit 3C
- TCA
Tricarboxylic acid
- TIGAR
TP53-induced glycolysis and apoptosis regulator
- TP53
Tumor protein 53
- UGP2
UTP:glucose-1-P uridylyltransferase 2
- VHL
Von Hippel-Lindau
References
- 1.Warburg, O. (1924). Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften, 12, 1131–1137.CrossRefGoogle Scholar
- 2.Warburg, O. (1928). Chemical constitution of respiration ferment. Science, 68(1767), 437–443.CrossRefPubMedGoogle Scholar
- 3.Cooper, G. M., & Hausman, R. E. (2009). The cell: A molecular approach (5th ed.). Washington, DC: ASM Press; Sinauer Associates. xix, 820 p.Google Scholar
- 4.Warburg, O., Wind, F., & Negelstein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8(6), 519–530.CrossRefPubMedGoogle Scholar
- 5.Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.CrossRefGoogle Scholar
- 6.Weinhouse, S. (1951). Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors. Cancer Research, 11, 585–591.PubMedPubMedCentralGoogle Scholar
- 7.Hay, N. (2016). Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nature Reviews Cancer, 16, 635–649.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Dang, C. V., et al. (2011). Therapeutic targeting of cancer cell metabolism. Journal of Molecular Medicine, 89(3), 205–212.CrossRefPubMedGoogle Scholar
- 9.Semenza, G. L. (2010). HIF-1: Upstream and downstream of cancer metabolism. Current Opinion in Genetics & Development, 20(1), 51–56.CrossRefGoogle Scholar
- 10.Christofk, H. R., Vander Heiden, M., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., & Cantley, L. C. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.CrossRefPubMedGoogle Scholar
- 11.Levine, A. J., & Puzio-Kuter, A. (2010). The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330(6009), 1340–1344.CrossRefPubMedGoogle Scholar
- 12.Rousset, M., Zweibaum, J., & Fogh, J. (1981). Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Research, 41(3), 1165–1170.PubMedGoogle Scholar
- 13.Cheng, K. W., et al. (2012). Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Molecular Medicine, 4(2), 125–141.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Guin, S., et al. (2014). Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. Journal of the National Cancer Institute, 106(5), dju062.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Shen, G.-M., et al. (2010). Hypoxia-inducible factor 1-mediated regulation of PPP1R3C promotes glycogen accumulation in human MCF-7 cells under hypoxia. FEBS Letters, 584(20), 4366–4372.CrossRefPubMedGoogle Scholar
- 16.Pelletier, J., et al. (2012). Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Frontiers in Oncology, 2, 18–18.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Zois, C. E., Favaro, E., & Harris, A. L. (2014). Glycogen metabolism in cancer. Biochemical Pharmacology, 92(1), 3–11.CrossRefPubMedGoogle Scholar
- 18.Zhu, Q., et al. (2011). Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. The Prostate, 71(8), 835–845.CrossRefPubMedGoogle Scholar
- 19.Ros, S., & Schulze, A. (2012). Linking glycogen and senescence in cancer cells. Cell Metabolism, 16(6), 687–688.CrossRefPubMedGoogle Scholar
- 20.Zhang, P., et al. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10684–10689.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Khan, M., et al. (2015). mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discovery, 1, 15016.CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Chan, D. A., et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Science Translational Medicine, 3(94), 94ra70.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Amann, T., & Hellerbrand, C. (2009). GLUT1 as a therapeutic target in hepatocellular carcinoma. Expert Opinion on Therapeutic Targets, 13(12), 1411–1427.CrossRefPubMedGoogle Scholar
- 24.Marin-Valencia, I., et al. (2012). Glut1 deficiency (G1D): Epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiology of Disease, 48(1), 92–101.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Sborov, D. W., Haverkos, B. M., & Harris, P. J. (2015). Investigational cancer drugs targeting cell metabolism in clinical development. Expert Opinion on Investigational Drugs, 24(1), 79–94.CrossRefPubMedGoogle Scholar
- 26.Heikkinen, S., et al. (1999). Hexokinase II-deficient: Mice prenatal death of homozygotes without disturbances in glucose tolerance in heterozygotes. Journal of Biological Chemistry, 274(32), 22517–22523.CrossRefPubMedGoogle Scholar
- 27.Clem, B., et al. (2008). Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Molecular Cancer Therapeutics, 7(1), 110–120.CrossRefPubMedGoogle Scholar
- 28.Schoors, S., et al. (2014). Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metabolism, 19(1), 37–48.CrossRefPubMedGoogle Scholar
- 29.Wu, S., et al. (2017). Risk factors of post-operative severe hyperlactatemia and lactic acidosis following laparoscopic resection for pheochromocytoma. Scientific Reports, 7(1), 403.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Doherty, J. R., & Cleveland, J. L. (2013). Targeting lactate metabolism for cancer therapeutics. The Journal of Clinical Investigation, 123(9), 3685–3692.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Koukourakis, M. I., et al. (2003). Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. British Journal of Cancer, 89(5), 877–885.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Koukourakis, M. I., et al. (2009). Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology, 77(5), 285–292.CrossRefPubMedGoogle Scholar
- 33.Koukourakis, M. I., et al. (2005). Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clinical & Experimental Metastasis, 22(1), 25–30.CrossRefGoogle Scholar
- 34.Le, A., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Yu, Y., et al. (2001). Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochemical Pharmacology, 62(1), 81–89.CrossRefPubMedGoogle Scholar
- 36.Vander Jagt, D. L., Deck, L. M., & Royer, R. E. (2000). Gossypol: Prototype of inhibitors targeted to dinucleotide folds. Current Medicinal Chemistry, 7(4), 479–498.CrossRefPubMedGoogle Scholar
- 37.Manerba, M., et al. (2012). Galloflavin (CAS 568-80-9): A novel inhibitor of lactate dehydrogenase. ChemMedChem, 7(2), 311–317.CrossRefPubMedGoogle Scholar
- 38.Granchi, C., et al. (2011). Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. Journal of Medicinal Chemistry, 54(6), 1599–1612.CrossRefPubMedGoogle Scholar
- 39.Lee, W.-N. P., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91(12), 2094–2100.CrossRefPubMedPubMedCentralGoogle Scholar