3D Virtual System for Strengthening Lower and Upper Limbs in Children

  • Edwin Pruna
  • Jenny Tigse
  • Alexandra Chuquitarco
  • Marco Pilatásig
  • Ivón Escobar
  • Eddie D. Galarza
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

A virtual system is presented for child limb strengthening by using the Kinect device. An interactive environment was created using Unity 3D in order to perform movements with upper and lower limbs. The system was tested by one user, the same one performed every exercise correctly, and this helped to strengthen the affected area. Additionally, graphs were generated to compare therapist movements as an input signal versus user movements as an output signal.

Keywords

Kinect Rehabilitation Unity 3D Virtual system 

Notes

Acknowledgements

We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.

References

  1. 1.
    Newell, K.: Constraints on the development of coordination. In: Wade, M.G., Whiting, H.T. (eds.) Motor Development in Children: Aspects of Coordination and Control. Nijhoff, Dordrecht (1986)Google Scholar
  2. 2.
    Kakebeeke, T.H., Lanzi, S., Zysset, A.E., Arhab, A., Messerli-Bürgy, N., Stuelb, K., Munsch, S.: Association between body composition and motor performance in preschool children. Obes. Facts 10(5), 420–431 (2017)CrossRefGoogle Scholar
  3. 3.
    Levtzion-Korach, O., Tennenbaum, A., Schnitzer, R., Ornoy, A.: Early motor development of blind children. J. Paediatr. Child Health 36, 226–229 (2000)CrossRefGoogle Scholar
  4. 4.
    Gheysen, F., Loots, G., Van Waelvelde, H.: Motor development of deaf children with and without cochlear implants. J. Deaf Stud. Deaf Educ. 13, 215–224 (2008)CrossRefGoogle Scholar
  5. 5.
    Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, 6th edn. Elsevier Saunders, Philadelphia (2012)Google Scholar
  6. 6.
    Luo, Z., Jose, P.E., Huntsinger, C.S., Pigott, T.D.: Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 25, 595–614 (2007).  https://doi.org/10.1348/026151007X185329CrossRefGoogle Scholar
  7. 7.
    Brookman, A., McDonald, S., McDonald, D., Bishop, D.V.: Fine motor deficits in reading disability and language impairment: same or different? PeerJ 1(3), e217 (2013).  https://doi.org/10.7717/peerj.217CrossRefGoogle Scholar
  8. 8.
    Martzog, P.: Feinmotorische Fertigkeiten und kognitive Fa¨higkeiten bei Kindern im Vorschulalter [Fine motor skills and cogntive development in preschool children], 1st edn. Tectum, Marburg (2015)Google Scholar
  9. 9.
    Fenollar-Cortés, J., Gallego-Martínez, A., Fuentes, L.J.: The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD. Res. Dev. Disabil. 69, 77–84 (2017)CrossRefGoogle Scholar
  10. 10.
    Mayes, S.D., Calhoun, S.L., Learning, A.: Writing, and processing speed in typical children and children with ADHD, Autism, anxiety, depression, and oppositional-defiant disorder. Child Neuropsychol. 13(6), 469–493 (2007)CrossRefGoogle Scholar
  11. 11.
    Dinehart, L.H.: Handwriting in early childhood education: current research and future implications. J. Early Childhood Literacy 15(1), 97–118 (2015).  https://doi.org/10.1177/1468798414522825CrossRefGoogle Scholar
  12. 12.
    Grissmer, D., Grimm, K., Aiyer, S.: Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev. Psychol. 46(5), 1008–1017 (2010).  https://doi.org/10.1037/a0020104CrossRefGoogle Scholar
  13. 13.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  14. 14.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  15. 15.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  16. 16.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  17. 17.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  18. 18.
    Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94, 795–798 (2013)CrossRefGoogle Scholar
  19. 19.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  20. 20.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Therapy Sci. 27(7), 2151–2154 (2015).  https://doi.org/10.1589/jpts.27.2151CrossRefGoogle Scholar
  21. 21.
    Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M., Pilatásig, P.: Virtual system for upper limbs rehabilitation in children. In: International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 107–118. Springer, Cham (2017)Google Scholar
  22. 22.
    Pruna, E., Acurio, A., Escobar, I., Pérez, S.A., Zumbana, P., Meythaler, A., Álvarez, F.A.: 3D virtual system using a haptic device for fine motor rehabilitation. In: World Conference on Information Systems and Technologies, pp. 648–656. Springer, Cham (2017)Google Scholar
  23. 23.
    Albiol-Pérez, S., Mena-Cajas, J., Escobar-Anchaguano, I.P., Pruna-Panchi, E.P., Zumbana, P.: Virtual fine rehabilitation in patients with carpal tunnel syndrome using low-cost devices. In: Proceedings of the 4th Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 61–64. ACM (2017)Google Scholar
  24. 24.
    Chen, Y.-P., Kang, L.-J., Chuang, T.-Y., Doong, J.-L., Lee, S.-J., Tsai, M.-W., Jeng, S.-F., Sung, W.-H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Ther. 87(11), 1441–1457 (2007).  https://doi.org/10.2522/ptj.20060062CrossRefGoogle Scholar
  25. 25.
    Shah, N., Basteris, A., Amirabdollahian, F.: Design parameters in multimodal games for rehabilitation. Games Health: Res. Dev. Clin. Appl. 3(1), 13–20 (2014)CrossRefGoogle Scholar
  26. 26.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. application in a virtual rehabilitation system for balance rehabilitation. In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
  • Jenny Tigse
    • 1
  • Alexandra Chuquitarco
    • 1
  • Marco Pilatásig
    • 1
  • Ivón Escobar
    • 1
  • Eddie D. Galarza
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations