Suspended Solids in the Gulf of Urabá Colombia – Annual Average Estimation Using MODIS MYD09Q1 Images

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 746)

Abstract

The paper presents the construction of an empirical model, applied to MODIS MYD09Q1 Images, based on in-situ samples of the Total Suspended Solids (TSS) found in the Gulf of Urabá (Colombia) in the period 2011–2015. The study highlights the usefulness of digital image processing when retrieving color data from the oceans, such as sedimentation. The resulting data proves to be relevant for the analyses of environmental care and ecological preservation in such coastal areas, which are known to be important due to their biodiversity but not as known regarding their associated sediment dynamics and concentration. Both spatial and temporal variability of sediments are analyzed in yearly scales. The results show significant season-driven differences in terms of concentration and direction of sediment plumes. It was found that annual average values exceed 100 mg/L at El Rotico Bay due to the contributions from Atrato River at Boca del Roto within the Gulf of Urabá.

Keywords

Digital image processing Total Suspended Solids MODIS 

References

  1. 1.
    Kumar, A., Equeenuddin, S.M., Mishra, D.R., Acharya, B.C.: Remote monitoring of sediment dynamics in a coastal lagoon: long-term spatio-temporal variability of suspended sediment in Chilika. Estuar. Coast. Shelf Sci. 170, 155–172 (2016).  https://doi.org/10.1016/j.ecss.2016.01.018CrossRefGoogle Scholar
  2. 2.
    Fernandez-Nóvoa, D., Mendes, R., deCastro, M., Dias, J.M., Sánchez-Arcilla, A., Gómez-Gesteira, M.: Analysis of the influence of river discharge and wind on the Ebro turbid plume using MODIS-Aqua and MODIS-Terra data. J. Mar. Syst. 142, 40–46 (2015).  https://doi.org/10.1016/j.jmarsys.2014.09.009CrossRefGoogle Scholar
  3. 3.
    Doxaran, D., Lamquin, N., Park, Y.-J., Mazeran, C., Ryu, J.-H., Wang, M., Poteau, A.: Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 146, 36–48 (2014).  https://doi.org/10.1016/j.rse.2013.06.020CrossRefGoogle Scholar
  4. 4.
    Long, C.M., Pavelsky, T.M.: Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 129, 197–209 (2013).  https://doi.org/10.1016/j.rse.2012.10.019CrossRefGoogle Scholar
  5. 5.
    Chen, S., Han, L., Chen, X., Li, D., Sun, L., Li, Y.: Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).  https://doi.org/10.1016/j.isprsjprs.2014.10.006CrossRefGoogle Scholar
  6. 6.
    Wu, G., Cui, L., He, J., Duan, H., Fei, T., Liu, Y.: Comparison of MODIS-based models for retrieving suspended particulate matter concentrations in Poyang Lake, China. Int. J. Appl. Earth Obs. Geoinf. 24, 63–72 (2013).  https://doi.org/10.1016/j.jag.2013.03.001CrossRefGoogle Scholar
  7. 7.
    Min, J.-E., Ryu, J.-H., Lee, S., Son, S.: Monitoring of suspended sediment variation using Landsat and MODIS in the Saemangeum coastal area of Korea. Mar. Pollut. Bull. 64(2), 382–390 (2012).  https://doi.org/10.1016/j.marpolbul.2011.10.025CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Tang, J., Dong, Q., Song, Q., Ding, J.: Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 114(2), 392–403 (2010).  https://doi.org/10.1016/j.rse.2009.09.016CrossRefGoogle Scholar
  9. 9.
    Sagarminaga, Y., Chust, G., Dailloux, D.: Detección y seguimiento de la pluma del río Adour mediante MODIS. Presented in XI National Congress of Remote Sensing, Puerto de la Cruz, Tenerife, pp. 227–230 (2005)Google Scholar
  10. 10.
    Dekker, A.G., Vos, R.J., Peters, S.W.M.: Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 268(1–3), 197–214 (2001).  https://doi.org/10.1016/S0048-9697(00)00679-3CrossRefGoogle Scholar
  11. 11.
    Garcia, C., Sierra, P.C.: Atlas del golfo de Urabá: una mirada al Caribe de Antioquia y Chocó. Instituto de investigaciones Marinas y Costeras - Invemar- y Gobernación de Antioquia, Santa Marta – Colombia (2007)Google Scholar
  12. 12.
    Molina, A., Molina, C., Chevillot, P.: La percepción remota aplicada para determinar la circulación de las aguas superficiales del Golfo de Urabá y las variaciones de su línea de costa. Bol. Cient. CIOH 11, 23–58 (1992)Google Scholar
  13. 13.
    Wu, G., Liu, L., Chen, F., Fei, T.: Developing MODIS-based retrieval models of suspended particulate matter concentration in Dongting Lake, China. Int. J. Appl. Earth Obs. Geoinf. 32, 46–53 (2014).  https://doi.org/10.1016/j.jag.2014.03.025CrossRefGoogle Scholar
  14. 14.
    Feng, L., Hu, C., Chen, X., Tian, L., Chen, L.: Human induced turbidity changes in Poyang Lake between 2000 and 2010: observations from MODIS. J. Geophys. Res. Oceans 117(C7), C07006 (2012).  https://doi.org/10.1029/2011JC007864CrossRefGoogle Scholar
  15. 15.
    Vermote, E.F., Roger, J.C., Ray, J.P.: MODIS Surface Reflectance User’s Guide (2015)Google Scholar
  16. 16.
    Doxaran, D., Froidefond, J.-M., Castaing, P., Babin, M.: Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 81(3), 321–332 (2009).  https://doi.org/10.1016/j.ecss.2008.11.013CrossRefGoogle Scholar
  17. 17.
    Pavelsky, T.M., Smith, L.C.: Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resour. Res. 45(11), W11417 (2009).  https://doi.org/10.1029/2008WR007424CrossRefGoogle Scholar
  18. 18.
    Chen, Z., Hu, C., Muller-Karger, F.: Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 109(2), 207–220 (2007).  https://doi.org/10.1016/j.rse.2006.12.019CrossRefGoogle Scholar
  19. 19.
    Harding Jr., L.W., Magnuson, A., Mallonee, M.E.: SeaWiFS retrievals of chlorophyll in Chesapeake Bay and the mid-Atlantic bight. Estuar. Coast. Shelf Sci. 62(1–2), 75–94 (2005).  https://doi.org/10.1016/j.ecss.2004.08.011CrossRefGoogle Scholar
  20. 20.
    Park, E., Latrubesse, E.M.: Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 147, 232–242 (2014).  https://doi.org/10.1016/j.rse.2014.03.013CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Shi, K., Zhou, Y., Liu, X., Qin, B.: Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens. Environ. 173, 109–121 (2016).  https://doi.org/10.1016/j.rse.2015.11.020CrossRefGoogle Scholar
  22. 22.
    Shi, K., et al.: Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-aqua data. Remote Sens. Environ. 164, 43–56 (2015).  https://doi.org/10.1016/j.rse.2015.02.029CrossRefGoogle Scholar
  23. 23.
    Tarrant, P.E., Amacher, J.A., Neuer, S.: Assessing the potential of medium-resolution imaging spectrometer (MERIS) and moderate-resolution imaging spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs. Water Resour. Res. 46(9), W09532 (2010).  https://doi.org/10.1029/2009WR008709CrossRefGoogle Scholar
  24. 24.
    Bernardo, N., Watanabe, F., Rodríguez, T., Alcántara, E.: Evaluation of the suitability of MODIS, OLCI and OLI for mapping the distribution of total suspended matter in the Barra Bonita Reservoir (Tieté River, Brazil). Remote Sens. Appl. Soc. Environ. 4, 68–82 (2016).  https://doi.org/10.1016/j.rsase.2016.06.002CrossRefGoogle Scholar
  25. 25.
    Miller, R.L., McKee, B.A.: Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 93(1–2), 259–266 (2004).  https://doi.org/10.1016/j.rse.2004.07.012CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de ingenieríaUniversidad Distrital Francisco José de CaldasBogotáColombia

Personalised recommendations