Advertisement

Conclusions and Future Directions

  • Kieran L. Hudson
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

To summarise the first part of this thesis, I have demonstrated the utility of protein X-ray crystal structures containing carbohydrates as a source of information on PCIs. I generated a database of coordinates of carbohydrate residues and proximal amino acids from structures in the PDB (Berman et al., Nucl Acids Res 28:235–242, 2000, [1]), with the carbohydrates identified using GlyVicinity, (Lütteke and Frank, Nucl Acids Res 33:D242–D246, 2005, [2]) and the quality of the data validated using Privateer (Agirre et al., Nat Struct Mol Biol 22:833–834, 2015, [3]). Analysis of the distribution of amino acids in the carbohydrate binding sites, and particularly comparison of the distributions around different monosaccharides, are powerful tools for understanding carbohydrate-based interactions at the molecular level.

References

  1. 1.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235–242CrossRefPubMedGoogle Scholar
  2. 2.
    Lütteke T, Frank M, von der Lieth C-W (2005) Nucl Acids Res 33:D242–D246CrossRefGoogle Scholar
  3. 3.
    Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD (2015) Nat Struct Mol Biol 22:833–834CrossRefPubMedGoogle Scholar
  4. 4.
    Asensio JL, Ardá A, Cañada FJ, Jiménez-Barbero J (2013) Acc Chem Res 46:946–954CrossRefPubMedGoogle Scholar
  5. 5.
    Nishio M (2011) Phys Chem Chem Phys 13:13873–13900CrossRefPubMedGoogle Scholar
  6. 6.
    Walt D, Aoki-Kinoshita KF, Bendiak B, Bertozzi CR, Boons G-J, Darvill A, Hart G, Kiessling LL, Lowe J, Moon RJ, Paulson JC, Sasisekharan R, Varki AP, Wong C-H (2012) Transforming glycoscience: a roadmap for the Future. National Academies Press, Washington, D.CGoogle Scholar
  7. 7.
    Vasella A, Davies GJ, Böhm M (2002) Curr Opin Chem Biol 6:619–629CrossRefPubMedGoogle Scholar
  8. 8.
    Mullins EA, Shi R, Parsons ZD, Yuen PK, David SS, Igarashi Y, Eichman BF (2015) Nature 527:254–258CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beene DL, Brandt GS, Zhong W, Zacharias NM, Lester HA, Dougherty DA (2002) Biochemistry 41:10262–10269CrossRefPubMedGoogle Scholar
  10. 10.
    Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Nat Mater 8:596–600CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mehrban N, Abelardo ES, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Adv Healthc Mater 3:1387–1391CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mehrban N, Zhu B, Tamagnini F, Young FI, Wasmuth A, Hudson KL, Thomson AR, Birchall MA, Randall AD, Song B, Woolfson DN (2015) ACS Biomater Sci Eng 1:431–439CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wasmuth A, Mehrban N, Hudson KL, Thomson AR, Mullen LM, Birchall MA, Woolfson DN, Manuscript in preparationGoogle Scholar
  14. 14.
    Boggs JM, Gao W, Zhao J, Park H-J, Liu Y, Basu A (2010) FEBS Lett 584:1771–1778CrossRefPubMedGoogle Scholar
  15. 15.
    Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T (2006) Biomaterials 27:576–585CrossRefPubMedGoogle Scholar
  16. 16.
    van Hest JCM, van Delft FL (2011) ChemBioChem 12:1309–1312CrossRefPubMedGoogle Scholar
  17. 17.
    Dondoni A (2008) Angew Chem Int Ed 47:8995–8997CrossRefGoogle Scholar
  18. 18.
    Minozzi M, Monesi A, Nanni D, Spagnolo P, Marchetti N, Massi A (2011) J Org Chem 76:450–459CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations