Advertisement

Carbohydrate Modifiers for Tissue Engineering Scaffolds

  • Kieran L. Hudson
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Three monosaccharides, Glc (23), Gal (24), and GlcNAc (25, Fig.  1.2) were selected as initial targets for the synthesis of carbohydrate modifiers for the hSAF scaffold. These were chosen due to their prevalence in biology as some of the major components of natural oligosaccharides (Werz et al., ACS Chem Biol 2:685–691, 2007, [1]), meaning that they are most likely to be tolerated by cells and elicit a biological response. Their ubiquity also means that they are readily available and accessible syntheses of many derivatives have been developed.

References

  1. 1.
    Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth C-W, Seeberger PH (2007) ACS Chem Biol 2:685–691CrossRefPubMedGoogle Scholar
  2. 2.
    Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T (2006) Biomaterials 27:576–585CrossRefPubMedGoogle Scholar
  3. 3.
    Boggs JM, Gao W, Zhao J, Park H-J, Liu Y, Basu A (2010) FEBS Lett 584:1771–1778CrossRefPubMedGoogle Scholar
  4. 4.
    Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54:631–664CrossRefPubMedGoogle Scholar
  5. 5.
    Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  6. 6.
    Toole BP (2004) Nat Rev Cancer 4:528–539CrossRefPubMedGoogle Scholar
  7. 7.
    Mereyala HB, Gurrala SR (1998) Carbohydr Res 307:351–354CrossRefGoogle Scholar
  8. 8.
    Vauzeilles B, Dausse B, Palmier S, Beau J-M (2001) Tetrahedron Lett 42:7567–7570CrossRefGoogle Scholar
  9. 9.
    van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Nature 446:1105–1109CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao J, Liu Y, Park H-J, Boggs J M, Basu A, Program F (2012) Bioconjug Chem 1–64Google Scholar
  11. 11.
    Guo J, Ye X-S (2010) Molecules 15:7235–7265CrossRefPubMedGoogle Scholar
  12. 12.
    Izumi M, Fukase K, Kusumoto S (2002) Biosci Biotechnol Biochem 66:211–214CrossRefPubMedGoogle Scholar
  13. 13.
    Merkel L, Beckmann HSG, Wittmann V, Budisa N (2008) ChemBioChem 9:1220–1224CrossRefPubMedGoogle Scholar
  14. 14.
    Mosmann T (1983) J Immunol Methods 65:55–63CrossRefGoogle Scholar
  15. 15.
    Russo L, Gloria A, Russo T, D’Amora U, Taraballi F, De Santis R, Ambrosio L, Nicotra F, Cipolla L (2013) RSC Adv 3:6286–6289CrossRefGoogle Scholar
  16. 16.
    Mehrban N, Abelardo ES, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Adv Healthc Mater 3:1387–1391CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mehrban N, Zhu B, Tamagnini F, Young FI, Wasmuth A, Hudson KL, Thomson AR, Birchall MA, Randall AD, Song B, Woolfson DN (2015) ACS Biomater Sci Eng 1:431–439CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mahmoud ZN, Gunnoo SB, Thomson AR, Fletcher JM, Woolfson DN (2011) Biomaterials 32:3712–3720CrossRefPubMedGoogle Scholar
  19. 19.
    Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Hölzemann G, Goodman SL, Kessler H (2000) ChemBioChem 1:107–114CrossRefPubMedGoogle Scholar
  20. 20.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Adv Mater 21:3307–3329CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) J Control Release 114:343–347CrossRefPubMedGoogle Scholar
  22. 22.
    Kislukhin AA, Higginson CJ, Hong VP, Finn MG (2012) J Am Chem Soc 134:6491–6497CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nakabayashi S, Warren CD, Jeanloz RW (1986) Carbohydr Res 150:C7–C10CrossRefPubMedGoogle Scholar
  24. 24.
    Wittmann V, Lennartz D (2002) Eur J Org Chem 1363–1367Google Scholar
  25. 25.
    Mackenzie LF, Wang Q, Warren RAJ, Withers SG (1998) J Am Chem Soc 7863:5583–5584CrossRefGoogle Scholar
  26. 26.
    Kim Y-W, Lee SS, Warren RAJ, Withers SG (2004) J Biol Chem 279:42787–42793CrossRefPubMedGoogle Scholar
  27. 27.
    Fukuda T, Onogi S, Miura Y (2009) Thin Solid Films 518:880–888CrossRefGoogle Scholar
  28. 28.
    Goebel WF, Avery OT (1929) J Exp Med 50:521–531CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Williams SJ, Withers SG (2000) Carbohydr Res 327:27–46CrossRefPubMedGoogle Scholar
  30. 30.
    Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, Strynadka NC (2001) Nat Struct Biol 8:166–175CrossRefPubMedGoogle Scholar
  31. 31.
    Unverzagt C, Kunz H, Paulson J (1990) J Am Chem Soc 01:9308–9309CrossRefGoogle Scholar
  32. 32.
    Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S-I, Paulson JC (1990) Science 250:1130–1132CrossRefPubMedGoogle Scholar
  33. 33.
    Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) J Am Chem Soc 127:17618–17619CrossRefPubMedGoogle Scholar
  34. 34.
    Sugiarto G, Lau K, Qu J, Li Y, Lim S, Mu S, Ames JB, Fishe AJ, Chen X (2012) ACS Chem Biol 7:1232–1240CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rich JR, Cunningham A-M, Gilbert M, Withers SG (2011) Chem Commun (Cambridge, U.K) 47:10806–10808Google Scholar
  36. 36.
    Dumas DP, Ichikawa Y, Wong C-H, Lowe JB, Nair RP (1991) Bioorg Med Chem Lett 1:425–428CrossRefGoogle Scholar
  37. 37.
    Lin S-W, Yuan T-M, Li J-R, Lin C-H (2006) Biochemistry 45:8108–8116CrossRefPubMedGoogle Scholar
  38. 38.
    Hennen E, Faissner A (2012) Int J Biochem Cell Biol 44:830–833CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations