FAMAP: A Framework for Developing m-Health Apps

  • Iván García-Magariño
  • Manuel Gonzalez Bedia
  • Guillermo Palacios-Navarro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

The edge-cutting mobile technologies have allowed the expansion of m-health applications for both patients and doctors. However, the variety of technologies, platforms and general-purpose development frameworks make developers and researchers to spend a considerable amount of time in developing m-health apps from scratch. This papers presents an ongoing research project about the creation of a framework for assisting developers and researchers in creating m-health apps called FAMAP. This framework is presented for the first time in the current article. Among others, this framework contains components for respectively (1) collecting data, (2) visualizing data analytics, (3) automating the definition and management of questionnaires, (4) implementing agent-based decision support systems and (5) supporting multi-modal communication. To show the utility of the proposed framework, this article presents some well-known and in-progress m-health apps developed with this framework. This work is assessed by considering (a) the usage data to show the commitment of users in one of the apps, and (b) the downloads and ranking in stores of another of the apps.

Keywords

m-health Software development Mobile application App Well-being Multi-agent system 

Notes

Acknowledgments

We acknowledge the research project “Construcción de un framework para agilizar el desarrollo de aplicaciones móviles en el ámbito de la salud” funded by University of Zaragoza and Foundation Ibercaja with grant reference JIUZ-2017-TEC-03.

References

  1. 1.
    Amalfitano, D., Amatucci, N., Memon, A.M., Tramontana, P., Fasolino, A.R.: A general framework for comparing automatic testing techniques of Android mobile apps. J. Syst. Softw. 125, 322–343 (2017)CrossRefGoogle Scholar
  2. 2.
    Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)CrossRefGoogle Scholar
  3. 3.
    Galesic, M.: Dropouts on the web: effects of interest and burden experienced during an online survey. J. Official Stat. 22(2), 313 (2006)Google Scholar
  4. 4.
    García-Magariño, I., Palacios-Navarro, G.: A model-driven approach for constructing ambient assisted-living multi-agent systems customized for Parkinson patients. J. Syst. Softw. 111, 34–48 (2016)CrossRefGoogle Scholar
  5. 5.
    García-Magariño, I., Plaza, I.: ABS-MindHeart: an agent based simulator of the influence of mindfulness programs on heart rate variability. J. Comput. Sci. 19, 11–20 (2017)CrossRefGoogle Scholar
  6. 6.
    García-Magariño, I., Plaza, I.: ABSEM: an agent-based simulator of emotions in mindfulness programs. Expert Syst. Appl. 84, 49–57 (2017)CrossRefGoogle Scholar
  7. 7.
    García-Magariño, I., Gómez-Sanz, J.J., Pérez-Agüera, J.R.: A multi-agent based implementation of a Delphi process. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 3, pp. 1543–1546 (2008). International Foundation for Autonomous Agents and Multiagent SystemsGoogle Scholar
  8. 8.
    García-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes, M.P., Gómez-Sanz, J.: A tool for generating model transformations by-example in multi-agent systems. In: 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). Advances in Intelligent and Soft Computing, vol. 55, pp. 70–79. Springer (2009)Google Scholar
  9. 9.
    García-Magariño, I., Cossentino, M., Seidita, V.: A metrics suite for evaluating agent-oriented architectures. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 912–919. ACM (2010)Google Scholar
  10. 10.
    García-Magariño, I., Gómez-Rodríguez, A., González-Moreno, J.C., Palacios-Navarro, G.: PEABS: a process for developing efficient agent-based simulators. Eng. Appl. Artif. Intell. 46, 104–112 (2015)CrossRefGoogle Scholar
  11. 11.
    García-Magariño, I., Lacuesta, R., Lloret, J.: Agent-based simulation of smart beds with Internet-of-Things for exploring Big Data analytics. IEEE Access (2017). https://doi.org/10.1109/ACCESS.2017.2764467
  12. 12.
    García-Magariño, I., Palacios-Navarro, G., Lacuesta, R.: TABSAOND: a technique for developing agent-based simulation apps and online tools with nondeterministic decisions. Simul. Modell. Pract. Theor. 77, 84–107 (2017)CrossRefGoogle Scholar
  13. 13.
    Grundy, Q.H., Wang, Z., Bero, L.A.: Challenges in assessing mobile health app quality: a systematic review of prevalent and innovative methods. Am. J. Prev. Med. 51(6), 1051–1059 (2016)CrossRefGoogle Scholar
  14. 14.
    Gutierrez, C., Garcia-Magariño, I.: A metrics suite for the communication of multi-agent systems. J. Phys. Agents 3(2), 7–14 (2009)Google Scholar
  15. 15.
    Lattie, E.G., Schueller, S.M., Sargent, E., Stiles-Shields, C., Tomasino, K.N., Corden, M.E., Begale, M., Karr, C.J., Mohr, D.C.: Uptake and usage of intellicare: a publicly available suite of mental health and well-being apps. Internet Interventions 4, 152–158 (2016)CrossRefGoogle Scholar
  16. 16.
    Mani, M., Kavanagh, D.J., Hides, L., Stoyanov, S.R.: Review and evaluation of mindfulness-based iPhone apps. JMIR mHealth uHealth 3(3), 82 (2015)CrossRefGoogle Scholar
  17. 17.
    Miah, S.J., Gammack, J., Hasan, N.: Extending the framework for mobile health information systems research: a content analysis. Inf. Syst. 69, 1–24 (2017)CrossRefGoogle Scholar
  18. 18.
    Mukherjee, S., Mondal, I.: Future practicability of Android application development with new android libraries and frameworks. Int. J. Comput. Sci. Inf. Technol. 5(4), 5575–5579 (2014)Google Scholar
  19. 19.
    Olayinka, O., Kekeh, M., Sheth-Chandra, M., Akpinar-Elci, M.: Big Data knowledge in global health education. Ann. Global Health (2017). https://doi.org/10.1016/j.aogh.2017.09.005
  20. 20.
    Plaza García, I., Sánchez, C.M., Espilez, Á.S., García-Magariño, I., Guillen, G.A., García-Campayo, J.: Development and initial evaluation of a mobile application to help with mindfulness training and practice. Int. J. Med. Inform. 105, 59–67 (2017)CrossRefGoogle Scholar
  21. 21.
    Schnall, R., Rojas, M., Bakken, S., Brown, W., Carballo-Dieguez, A., Carry, M., Gelaude, D., Mosley, J.P., Travers, J.: A user-centered model for designing consumer mobile health (mhealth) applications (apps). J. Biomed. Inf. 60, 243–251 (2016)CrossRefGoogle Scholar
  22. 22.
    Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25 (2003)CrossRefGoogle Scholar
  23. 23.
    Shastry, N., Mirajkar, A.M., Moodithaya, S.S., Halahalli, H.N.: Resting heart rate variability and cardiorespiratory fitness in healthy young adults. Indian J. Med. Spec. 8(1), 17–20 (2017)CrossRefGoogle Scholar
  24. 24.
    Sicari, S., Rizzardi, A., Grieco, L., Piro, G., Coen-Porisini, A.: A policy enforcement framework for Internet of Things applications in the smart health. Smart Health 3–4, 39–74 (2017)CrossRefGoogle Scholar
  25. 25.
    Wilkes, C., Kydd, R., Sagar, M., Broadbent, E.: Upright posture improves affect and fatigue in people with depressive symptoms. J. Behav. Ther. Exp. Psychiatry 54, 143–149 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Iván García-Magariño
    • 1
    • 2
  • Manuel Gonzalez Bedia
    • 1
  • Guillermo Palacios-Navarro
    • 3
  1. 1.Department of Computer Science and Engineering of SystemsUniversity of ZaragozaTeruel and ZaragozaSpain
  2. 2.Instituto de Investigación Sanitaria AragónUniversity of ZaragozaZaragozaSpain
  3. 3.Department of Electronic Engineering and CommunicationsUniversity of ZaragozaTeruelSpain

Personalised recommendations