Mexican Spanish Affective Dictionary

  • Adriana Peña Pérez Negrón
  • Luis Casillas
  • Graciela Lara
  • Mario Jiménez
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

In the study of Affective Computing, the lexicon-based approach represents a useful mechanism that consists on using rated words to understand their affective role in a conversation. One of the most used lists of affectively rated words is the Affective Norms for English Words (ANEW), which evaluates the dimensions of pleasure, arousal and dominance for the English language. This list has been translated for other languages such as German or Spanish with effective results; however, there is not an affective lexicon for Mexican Spanish, rated by Mexicans. Based on the ANEW methodology, but using the most frequently words in Mexican Spanish language, similar to emoticons figures for the evaluation and an ad hoc app to collect the data, a list with means and standard deviation for Mexican Spanish words was obtained. Results and main differences with the ANEW study are here discussed.

Keywords

Emotional rating Affective Computing Lexicon-based approach ANEW 

References

  1. 1.
    Picard, R.W. (ed.): Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  2. 2.
    Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)CrossRefGoogle Scholar
  3. 3.
    Soares, A.P., Comesaña, M., Pinheiro, A.P., Simões, A., Frade, C.S.: The adaptation of the Affective Norms for English words (ANEW) for European Portuguese. Behav. Res. Methods 44(1), 256–269 (2012)CrossRefGoogle Scholar
  4. 4.
    Bradley, M.M., Lang, P.J.: Affective Norms for English Words (ANEW): instruction manual and affective ratings. Technical report C-1, The Center for Research in Psychophysiology, University of Florida, pp. 1–45 (1999)Google Scholar
  5. 5.
    Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois, Urbana (1957)Google Scholar
  6. 6.
    Redondo, J., Fraga, I., Padrón, I., Comesaña, M.: The Spanish adaptation of ANEW (Affective Norms for English Words). Behav. Res. Methods 39(3), 600–605 (2007)CrossRefGoogle Scholar
  7. 7.
    Schmidtke, D.S., Schröder, T., Jacobs, A.M., Conrad, M.: ANGST: affective norms for German sentiment terms, derived from the affective norms for English words. Behav. Res. Methods 46(4), 1108–1118 (2014)CrossRefGoogle Scholar
  8. 8.
    Triandis, H.C., Osgood, C.E.: A comparative factorial analysis of semantic structures in monolingual Greek and American college students. J. Abnorm. Soc. Psychol. 57, 187–196 (1958).  https://doi.org/10.1037/h0046061 CrossRefGoogle Scholar
  9. 9.
    Wei, W.L., Wu, C.H., Lin, J.C.: A regression approach to affective rating of Chinese words from ANEW. In: Affective Computing and Intelligent Interaction, pp. 121–131 (2011)CrossRefGoogle Scholar
  10. 10.
    Stone, P.J., Dunphy, D.C., Smith, M.S.: The General Inquirer: A Computer Approach to Content Analysis. M.I.T. Press, Oxford (1966)Google Scholar
  11. 11.
    Stone, P.J.: Welcome to the General Inquirer Home Page. Harvard College, Cambridge (2002). Accessed 15 June 2017Google Scholar
  12. 12.
    Paltoglou, G., Gobron, S., Skowron, M., Thelwall, M., Thalmann, D.: Sentiment analysis of informal textual communication in cyberspace. In: Proceedings Engage 2010. Springer LNCS State-of-the-Art Survey, pp. 13–25 (2010)Google Scholar
  13. 13.
    Kučera, H., Francis, W.N.: Computational Analysis of Present-Day American English. Dartmouth Publishing Group, Sudbury (1967)Google Scholar
  14. 14.
    Lasswell, H.D., Namenwirth, J.Z.: The Lasswell Value Dictionary. Yale University Press, New Haven (1969)Google Scholar
  15. 15.
    Whissell, C.M.: The dictionary of affect in language. In: Emotion: Theory, Research, and Experience, vol. 4 (1989). The Measurement of EmotionsCrossRefGoogle Scholar
  16. 16.
    Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT Press, Cambridge (1974)Google Scholar
  17. 17.
    Bellezza, F.S., Greenwald, A.G., Banaji, M.R., Mahzarin, R.: Words high and low in pleasantness as rated by male and female college students. Behav. Res. Methods Instrum. Comput. 18, 299–303 (1986)CrossRefGoogle Scholar
  18. 18.
    Thorndike, E.L., Lorge, I.: The Teacher’s Word Book of 30,000 Words. Teachers College, Columbia University (l944)Google Scholar
  19. 19.
    Grefenstette, G., Qu, Y., Evans, D.A., Shanahan, J.G.: Validating the coverage of lexical resources for affect analysis and automatically classifying new words along semantic axes. In: Computing Attitude and Affect in Text: Theory and Applications, pp. 93–107. Springer (2006)Google Scholar
  20. 20.
    Tsai, A.C.R., Wu, C.E., Tsai, R.T.H., Hsu, J.Y.J.: Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Intell. Syst. 28(2), 22–30 (2013)CrossRefGoogle Scholar
  21. 21.
    Bermudez-Gonzalez, D., Miranda-Jiménez, S., García-Moreno, R.U., Calderón-Nepamuceno, D.: 28 generating with supervised learning techniques. New perspectives on teaching and working with languages in the digital era, p. 327 (2016)CrossRefGoogle Scholar
  22. 22.
    Sidorov, G., Miranda-Jiménez, S., Viveros-Jiménez, F., Gelbukh, A., Castro-Sánchez, N., Velásquez, F., Gordon, J.: Empirical study of machine learning based approach for opinion mining in tweets. In: Mexican International Conference on Artificial Intelligence, pp. 1–14. Springer, Heidelberg, October 2012Google Scholar
  23. 23.
    Ribeiro, F.N., Araújo, M., Gonçalves, P., Gonçalves, M.A., Benevenuto, F.: SentiBench-a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5(1), 1–29 (2016)CrossRefGoogle Scholar
  24. 24.
    Lara, L., Peña, G., Gordillo, L., Segovia, F., Valadez, C., Urrea, A., Cuahtecontz, N., Trujillo, E.: Diccionario del Español de México (DEM). El Colegio de México, A.C. (2012). http://dem.colmex.mx. Accessed 20 Aug 2016
  25. 25.
    Varela Barraza, J.A., Cabrera González, F., Zarabozo Enríquez de Rivera, D., de Rivera, D., Larios Villa, Y., González Ortiz, M.: Las 5000 palabras más frecuentes en los libros de texto oficiales de la educación básica en México. Revista electrónica de investigación educativa 15(3), 114–120 (2013)Google Scholar
  26. 26.
    Wiktionary (n.d.): Apéndice:Palabras más frecuentes del español. https://es.wiktionary.org/wiki/Apéndice:Palabras_más_frecuentes_del_español. Accessed 10 Aug 2016
  27. 27.
    Wallace, A., Carson, M.: Sharing and diversity in emotion terminology. Ethos 1(1), 1–29 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adriana Peña Pérez Negrón
    • 1
  • Luis Casillas
    • 1
  • Graciela Lara
    • 1
  • Mario Jiménez
    • 1
  1. 1.Computer Science Department, CUCEIUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations