Systematic Review of the Literature, Research on Blockchain Technology as Support to the Trust Model Proposed Applied to Smart Places

  • António Brandão
  • Henrique São Mamede
  • Ramiro Gonçalves
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 745)

Abstract

The smart places are vulnerable with corrupted or compromised data, with the false integration of new devices, and devices with firmware versions inconsistent. These risks worsen with the increasing volume and diversity of data, devices, infrastructures and users connected to the Web. The systematic review of the literature were selected 190 documents, which reveals the growing interest on the theme of blockchain technology with the publication of 14 documents in 2014 to about 100 already in 2017. The articles focused on the areas bitcoin (about 40%), IoT (about 30%), financial (about 15%), cryptocurrencies, electronic government (about 12%), smart contracts, smart cities, business (with about 10% each) and health (about 5%). This perspective confirms the generic model study data supported in blockchain technology for smart places, especially when applied to smart cities and the specific field of the mobility ecosystem, with the use of the new concepts of the application of blockchain in IoT, smart contracts and e-governance.

Keywords

Smart places Blockchain Literature review Internet of Things Smart contracts E-governance 

References

  1. 1.
    Nakamoto, S.: Bitcoin. A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  2. 2.
    Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: European Symposium on Research in Computer Security, pp. 313–326. Springer (2014)Google Scholar
  3. 3.
    Ateniese, G., Faonio, A., Magri, B., De Medeiros, B.: Certified bitcoins. In: International Conference on Applied Cryptography and Network Security, pp. 80–96. Springer (2014)Google Scholar
  4. 4.
    Butgereit, L., Martinus, C.: A comparison of two blockchain architectures for inspiring corporate excellence in South Africa. In: Conference on Information Communication Technology and Society (ICTAS), pp. 1–6. IEEE (2017)Google Scholar
  5. 5.
    de Lucena, A.U., Henriques, M.A.A.: Estudo de arquiteturas dos blockchains de Bitcoin e Ethereum (2016)Google Scholar
  6. 6.
    Fremantle, P., Scott, P.: A survey of secure middleware for the Internet of Things. PeerJ Comput. Sci. 3, e114 (2017)CrossRefGoogle Scholar
  7. 7.
    Anjum, A., Sporny, M., Sill, A.: Blockchain standards for compliance and trust. IEEE Cloud Comput. 4, 84–90 (2017)CrossRefGoogle Scholar
  8. 8.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24, 45–77 (2007)CrossRefGoogle Scholar
  9. 9.
    Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on blockchain technology? A systematic review. PLoS ONE 11, e0163477 (2016)CrossRefGoogle Scholar
  10. 10.
    Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: EASE, pp. 68–77 (2008)Google Scholar
  11. 11.
    Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80, 571–583 (2007)CrossRefGoogle Scholar
  12. 12.
    Min, X., Li, Q., Liu, L., Cui, L.: A permissioned blockchain framework for supporting instant transaction and dynamic block size. In: Trustcom/BigDataSE/I SPA, 2016 IEEE, pp. 90–96. IEEE (2016)Google Scholar
  13. 13.
    Li, C., Zhang, L.-J.: A blockchain based new secure multi-layer network model for Internet of Things (2017)Google Scholar
  14. 14.
    Nakashima, H., Aoyama, M.: An automation method of SLA contract of Web APIs and its platform based on blockchain concept (2017)Google Scholar
  15. 15.
    Zhang, Y., Wen, J.: An IoT electric business model based on the protocol of bitcoin. In: 2015 18th International Conference on Intelligence in Next Generation Networks (ICIN), pp. 184–191. IEEE (2015)Google Scholar
  16. 16.
    Dennis, R., Owenson, G., Aziz, B.: A temporal blockchain: a formal analysis. In: 2016 International Conference on Collaboration Technologies and Systems (CTS), pp. 430–437. IEEE (2016)Google Scholar
  17. 17.
    Sun, J., Yan, J., Zhang, K.Z.K.: Blockchain-based sharing services: what blockchain technology can contribute to smart cities. Fin. Innov. 2, 26 (2016)Google Scholar
  18. 18.
    Fu, D., Fang, L.: Blockchain-based trusted computing in social network. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 19–22. IEEE (2016)Google Scholar
  19. 19.
    Kshetri, N.: Can blockchain strengthen the Internet of Things? IT Prof. 19, 68–72 (2017)CrossRefGoogle Scholar
  20. 20.
    Sharma, P.K., Singh, S., Jeong, Y.-S., Park, J.H.: DistBlockNet: a distributed blockchains-based secure SDN architecture for IoT networks. IEEE Commun. Magaz. 55, 78–85 (2017)CrossRefGoogle Scholar
  21. 21.
    Wan, Z., Deng, R.H., Lee, D.: Electronic contract signing without using trusted third party. In: International Conference on Network and System Security, pp. 386–394. Springer (2015)CrossRefGoogle Scholar
  22. 22.
    Zhumabekuly Aitzhan, N., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secure Comput. 1 (2016)Google Scholar
  23. 23.
    Hou, H.: The application of blockchain technology in e-government in China. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–4. IEEE (2017)Google Scholar
  24. 24.
    Patel, D., Bothra, J., Patel, V.: Blockchain exhumed. In: Asia Security and Privacy (ISEASP), 2017 ISEA, pp. 1–12. IEEE (2017)Google Scholar
  25. 25.
    Dorri, A., Kanhere, S.S., Jurdak, R.: Blockchain in internet of things: challenges and solutions. arXiv preprint arXiv:1608.05187 (2016)
  26. 26.
    Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)CrossRefGoogle Scholar
  27. 27.
    Benchoufi, M., Ravaud, P.: Blockchain technology for improving clinical research quality. Trials 18, 335 (2017)Google Scholar
  28. 28.
    Zyskind, G., Nathan, O., Pentland, A.: “Sandy”: Decentralizing Privacy: Using Blockchain to Protect Personal Data (2015)Google Scholar
  29. 29.
    Fukumitsu, M., Hasegawa, S., Iwazaki, J., Sakai, M., Takahashi, D.: A Proposal of a Secure P2P-Type Storage Scheme by Using the Secret Sharing and the Blockchain (2017)Google Scholar
  30. 30.
    Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A Secure Sharding Protocol For Open Blockchains (2016)Google Scholar
  31. 31.
    Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba, P.: A Taxonomy of Blockchain-Based Systems for Architecture Design (2017)Google Scholar
  32. 32.
    Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: BLOCKBENCH: A Framework for Analyzing Private Blockchains (2017)Google Scholar
  33. 33.
    Samaniego, M., Deters, R.: Blockchain as a Service for IoT (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • António Brandão
    • 1
  • Henrique São Mamede
    • 2
  • Ramiro Gonçalves
    • 3
  1. 1.UAb e UTADVila RealPortugal
  2. 2.INESC-TECUAb - Universidade AbertaLisbonPortugal
  3. 3.INESC-TECUTAD – Universidade Trás-os-montes e Alto DouroVila RealPortugal

Personalised recommendations