Advertisement

Role of Deficits in Pathogen Recognition Receptors in Infection Susceptibility

  • Cristina Cunha
  • Samuel M. Gonçalves
  • Agostinho Carvalho
Chapter

Abstract

The interindividual variability in the development and progression of many infectious diseases raises fundamental questions about their actual pathogenesis. Clinical and epidemiological studies have reported an increasing number of both monogenic defects and common polymorphisms associated with many major infectious diseases. The study of genetic variation regulating the immune response provides important insights into the human immunobiology by pinpointing directly relevant immune molecules and pathways. Genetic studies of susceptibility to infection have typically focused on defects of antibody production, lack of T cells, phagocytes, natural killer cells, or complement, each of which can cause a classic immunodeficiency syndrome. More recently, genetic defects that impair pathogen recognition by the innate immune system and increase susceptibility to selected classes of microorganisms have also been reported. In this chapter, we discuss the contribution of host genetic variation in pattern recognition receptors to susceptibility to infectious disease. By deciphering the molecular and cellular processes that regulate human susceptibility to infection, this knowledge is predicted to lay the foundations for personalized medical interventions based on risk stratification and patient-tailored immunotherapy.

Keywords

Immunodeficiency Immunocompromised host Infectious disease Genetic defect Mendelian inheritance Polymorphism Innate immunity Pathogen recognition Pattern recognition receptor Toll-like receptor C-type lectin receptor Personalized medicine Immunotherapy 

Notes

Acknowledgments

This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (IF/00735/2014 to A.C. and SFRH/BPD/96176/2013 to C.C.)

References

  1. 1.
    Alcais A, Abel L, Casanova JL. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest. 2009;119(9):2506–14.  https://doi.org/10.1172/JCI38111.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Burgner D, Jamieson SE, Blackwell JM. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect Dis. 2006;6(10):653–63.  https://doi.org/10.1016/S1473-3099(06)70601-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012;13(3):175–88.  https://doi.org/10.1038/nrg3114.CrossRefPubMedGoogle Scholar
  4. 4.
    Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet. 2006;40:469–86.  https://doi.org/10.1146/annurev.genet.40.110405.090546.CrossRefPubMedGoogle Scholar
  5. 5.
    Netea MG, van der Meer JW. Immunodeficiency and genetic defects of pattern-recognition receptors. N Engl J Med. 2011;364(1):60–70.  https://doi.org/10.1056/NEJMra1001976.CrossRefPubMedGoogle Scholar
  6. 6.
    Netea MG, Wijmenga C, O’Neill LA. Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol. 2012;13(6):535–42.  https://doi.org/10.1038/ni.2284.CrossRefPubMedGoogle Scholar
  7. 7.
    van der Eijk EA, van de Vosse E, Vandenbroucke JP, van Dissel JT. Heredity versus environment in tuberculosis in twins: the 1950s United Kingdom Prophit Survey Simonds and Comstock revisited. Am J Respir Crit Care Med. 2007;176(12):1281–8.  https://doi.org/10.1164/rccm.200703-435OC.CrossRefPubMedGoogle Scholar
  8. 8.
    Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318(12):727–32.  https://doi.org/10.1056/NEJM198803243181202.CrossRefPubMedGoogle Scholar
  9. 9.
    Gingles NA, Alexander JE, Kadioglu A, Andrew PW, Kerr A, Mitchell TJ, et al. Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect Immun. 2001;69(1):426–34.  https://doi.org/10.1128/IAI.69.1.426-434.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Allison AC. Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J. 1954;1(4857):290–4.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317(5838):617–9.  https://doi.org/10.1126/science.1142963.CrossRefPubMedGoogle Scholar
  12. 12.
    Misch EA, Berrington WR, Vary JC Jr, Hawn TR. Leprosy and the human genome. Microbiol Mol Biol Rev: MMBR. 2010;74(4):589–620.  https://doi.org/10.1128/MMBR.00025-10.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stein CM. Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog. 2011;7(1):e1001189.  https://doi.org/10.1371/journal.ppat.1001189.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol. 2007;7(5):353–64.  https://doi.org/10.1038/nri2079.CrossRefPubMedGoogle Scholar
  15. 15.
    Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.  https://doi.org/10.1016/j.cell.2006.02.015.CrossRefPubMedGoogle Scholar
  16. 16.
    Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5.  https://doi.org/10.1126/science.1183021.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A. 1998;95(2):588–93.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.  https://doi.org/10.1038/nri1391.CrossRefPubMedGoogle Scholar
  20. 20.
    Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13(9):817–22.  https://doi.org/10.1038/ni.2369.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465–79.CrossRefPubMedGoogle Scholar
  22. 22.
    Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87.  https://doi.org/10.1038/nm.3893.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003;300(5625):1584–7.  https://doi.org/10.1126/science.1084677.CrossRefPubMedGoogle Scholar
  24. 24.
    Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.  https://doi.org/10.1074/jbc.C200651200.CrossRefPubMedGoogle Scholar
  25. 25.
    Kell AM, Gale M Jr. RIG-I in RNA virus recognition. Virology. 2015;479-480:110–21.  https://doi.org/10.1016/j.virol.2015.02.017.CrossRefPubMedGoogle Scholar
  26. 26.
    Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM, et al. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 2005;1(3):279–85.  https://doi.org/10.1371/journal.ppat.0010034.CrossRefPubMedGoogle Scholar
  27. 27.
    Netea MG, Joosten LA, van der Meer JW, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–42.  https://doi.org/10.1038/nri3897.CrossRefPubMedGoogle Scholar
  28. 28.
    Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5(3):156–64.  https://doi.org/10.1016/S1473-3099(05)01308-3.CrossRefPubMedGoogle Scholar
  29. 29.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet. 2000;25(2):187–91.  https://doi.org/10.1038/76048.CrossRefPubMedGoogle Scholar
  30. 30.
    Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med. 2002;162(9):1028–32.CrossRefPubMedGoogle Scholar
  31. 31.
    Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 1998;9(1):143–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299(5615):2076–9.  https://doi.org/10.1126/science.1081902.CrossRefPubMedGoogle Scholar
  33. 33.
    von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008;321(5889):691–6.  https://doi.org/10.1126/science.1158298.CrossRefGoogle Scholar
  34. 34.
    Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature. 2010;465(7300):885–90.  https://doi.org/10.1038/nature09121.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bousfiha A, Picard C, Boisson-Dupuis S, Zhang SY, Bustamante J, Puel A, et al. Primary immunodeficiencies of protective immunity to primary infections. Clin Immunol. 2010;135(2):204–9.  https://doi.org/10.1016/j.clim.2010.02.001.CrossRefPubMedGoogle Scholar
  36. 36.
    Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, et al. Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med. 2007;204(10):2407–22.  https://doi.org/10.1084/jem.20070628.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Courtois G, Smahi A, Reichenbach J, Doffinger R, Cancrini C, Bonnet M, et al. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest. 2003;112(7):1108–15.  https://doi.org/10.1172/JCI18714.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Doffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.  https://doi.org/10.1038/85837.CrossRefPubMedGoogle Scholar
  39. 39.
    Janssen R, van Wengen A, Hoeve MA, ten Dam M, van der Burg M, van Dongen J, et al. The same IkappaBalpha mutation in two related individuals leads to completely different clinical syndromes. J Exp Med. 2004;200(5):559–68.  https://doi.org/10.1084/jem.20040773.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet. 2000;67(6):1555–62.  https://doi.org/10.1086/316914.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317(5844):1522–7.  https://doi.org/10.1126/science.1139522.CrossRefPubMedGoogle Scholar
  42. 42.
    Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science. 2006;314(5797):308–12.  https://doi.org/10.1126/science.1128346.CrossRefPubMedGoogle Scholar
  43. 43.
    Sancho-Shimizu V, Perez de Diego R, Lorenzo L, Halwani R, Alangari A, Israelsson E, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121(12):4889–902.  https://doi.org/10.1172/JCI59259.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Perez de Diego R, Sancho-Shimizu V, Lorenzo L, Puel A, Plancoulaine S, Picard C, et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity. 2010;33(3):400–11.  https://doi.org/10.1016/j.immuni.2010.08.014.CrossRefPubMedGoogle Scholar
  45. 45.
    Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 2012;209(9):1567–82.  https://doi.org/10.1084/jem.20111316.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chapgier A, Kong XF, Boisson-Dupuis S, Jouanguy E, Averbuch D, Feinberg J, et al. A partial form of recessive STAT1 deficiency in humans. J Clin Invest. 2009;119(6):1502–14.  https://doi.org/10.1172/JCI37083.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.  https://doi.org/10.1038/ng1097.CrossRefPubMedGoogle Scholar
  48. 48.
    Gonzalez-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol. 2012;12(2):125–35.  https://doi.org/10.1038/nri3133.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Andersen LL, Mork N, Reinert LS, Kofod-Olsen E, Narita R, Jorgensen SE, et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med. 2015;212(9):1371–9.  https://doi.org/10.1084/jem.20142274.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. 2015;348(6233):448–53.  https://doi.org/10.1126/science.aaa1578.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ferwerda B, McCall MB, Verheijen K, Kullberg BJ, van der Ven AJ, Van der Meer JW, et al. Functional consequences of toll-like receptor 4 polymorphisms. Mol Med. 2008;14(5–6):346–52.  https://doi.org/10.2119/2007-00135.Ferwerda.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A. 2007;104(42):16645–50.  https://doi.org/10.1073/pnas.0704828104.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Papadopoulos AI, Ferwerda B, Antoniadou A, Sakka V, Galani L, Kavatha D, et al. Association of toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms with increased infection risk in patients with advanced HIV-1 infection. Clin Infect Dis. 2010;51(2):242–7.  https://doi.org/10.1086/653607.CrossRefPubMedGoogle Scholar
  54. 54.
    Schnetzke U, Spies-Weisshart B, Yomade O, Fischer M, Rachow T, Schrenk K, et al. Polymorphisms of toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes Immun. 2015;16(1):83–8.  https://doi.org/10.1038/gene.2014.67.CrossRefPubMedGoogle Scholar
  55. 55.
    Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med. 2008;359(17):1766–77.  https://doi.org/10.1056/NEJMoa0802629.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    de Boer MG, Jolink H, Halkes CJ, van der Heiden PL, Kremer D, Falkenburg JH, et al. Influence of polymorphisms in innate immunity genes on susceptibility to invasive aspergillosis after stem cell transplantation. PLoS One. 2011;6(4):e18403.  https://doi.org/10.1371/journal.pone.0018403.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Koldehoff M, Beelen DW, Elmaagacli AH. Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transplant Infect Dis (An Official Journal of the Transplantation Society). 2013;15(5):533–9.  https://doi.org/10.1111/tid.12115.CrossRefGoogle Scholar
  58. 58.
    Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis. 2008;197(4):618–21.  https://doi.org/10.1086/526500.CrossRefPubMedGoogle Scholar
  59. 59.
    Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M, et al. Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol. 2009;37(9):1022–9.  https://doi.org/10.1016/j.exphem.2009.06.004.CrossRefPubMedGoogle Scholar
  60. 60.
    Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med. 2008;178(7):710–20.  https://doi.org/10.1164/rccm.200803-462OC.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, Smith PB, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis. 2012;205(6):934–43.  https://doi.org/10.1093/infdis/jir867.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lan NT, Quy HT, et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol. 2007;37(8):2280–9.  https://doi.org/10.1002/eji.200737034.CrossRefPubMedGoogle Scholar
  63. 63.
    Carvalho A, De Luca A, Bozza S, Cunha C, D’Angelo C, Moretti S, et al. TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood. 2012;119(4):967–77.  https://doi.org/10.1182/blood-2011-06-362582.CrossRefPubMedGoogle Scholar
  64. 64.
    Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, et al. Characterization of specific immune responses to different Aspergillus antigens during the course of invasive Aspergillosis in hematologic patients. PLoS One. 2013;8(9):e74326.  https://doi.org/10.1371/journal.pone.0074326.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cunha C, Goncalves SM, Duarte-Oliveira C, Leite L, Lagrou K, Marques A, et al. IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. J Allergy Clin Immunol. 2017;140(3):867–870.e9.  https://doi.org/10.1016/j.jaci.2017.02.034.CrossRefPubMedGoogle Scholar
  66. 66.
    Hawn TR, Dunstan SJ, Thwaites GE, Simmons CP, Thuong NT, Lan NT, et al. A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis. 2006;194(8):1127–34.  https://doi.org/10.1086/507907.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet. 2007;39(4):523–8.  https://doi.org/10.1038/ng1976.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ferwerda B, Alonso S, Banahan K, McCall MB, Giamarellos-Bourboulis EJ, Ramakers BP, et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc Natl Acad Sci U S A. 2009;106(25):10272–7.  https://doi.org/10.1073/pnas.0811273106.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Miao R, Li J, Sun Z, Xu F, Shen H. Meta-analysis on the association of TIRAP S180L variant and tuberculosis susceptibility. Tuberculosis. 2011;91(3):268–72.  https://doi.org/10.1016/j.tube.2011.01.006.CrossRefPubMedGoogle Scholar
  70. 70.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.  https://doi.org/10.1038/35074106.CrossRefPubMedGoogle Scholar
  71. 71.
    Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198(10):1563–72.  https://doi.org/10.1084/jem.20031220.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Grube M, Loeffler J, Mezger M, Kruger B, Echtenacher B, Hoffmann P, et al. TLR5 stop codon polymorphism is associated with invasive aspergillosis after allogeneic stem cell transplantation. Med Mycol. 2013;51(8):818–25.  https://doi.org/10.3109/13693786.2013.809630.CrossRefPubMedGoogle Scholar
  73. 73.
    Wlasiuk G, Khan S, Switzer WM, Nachman MW. A history of recurrent positive selection at the toll-like receptor 5 in primates. Mol Biol Evol. 2009;26(4):937–49.  https://doi.org/10.1093/molbev/msp018.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood. 2006;108(9):3168–75.  https://doi.org/10.1182/blood-2006-05-024406.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361(18):1760–7.  https://doi.org/10.1056/NEJMoa0901053.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207(2):291–7.  https://doi.org/10.1084/jem.20091983.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C, et al. The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis. 2011;203(5):736–43.  https://doi.org/10.1093/infdis/jiq102.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394–402.  https://doi.org/10.1182/blood-2010-04-279307.CrossRefPubMedGoogle Scholar
  79. 79.
    Plantinga TS, van der Velden WJ, Ferwerda B, van Spriel AB, Adema G, Feuth T, et al. Early stop polymorphism in human DECTIN-1 is associated with increased candida colonization in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49(5):724–32.  https://doi.org/10.1086/604714.CrossRefPubMedGoogle Scholar
  80. 80.
    Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA, Kerscher B, et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe. 2015;17(2):252–9.  https://doi.org/10.1016/j.chom.2015.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.  https://doi.org/10.1056/NEJMoa0810719.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14.  https://doi.org/10.1056/NEJMoa1208487.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Torres JM, Martinez-Barricarte R, Garcia-Gomez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124(12):5239–48.  https://doi.org/10.1172/JCI77493.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB, Blanchard H. Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology. 2008;18(9):679–85.  https://doi.org/10.1093/glycob/cwn046.CrossRefPubMedGoogle Scholar
  85. 85.
    Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem. 2006;281(50):38854–66.  https://doi.org/10.1074/jbc.M606542200.CrossRefPubMedGoogle Scholar
  86. 86.
    Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9(10):1179–88.  https://doi.org/10.1038/ni.1651.CrossRefPubMedGoogle Scholar
  87. 87.
    Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and Collectins: friend or foe during pathogen invasion? Trends Microbiol. 2015;23(12):799–811.  https://doi.org/10.1016/j.tim.2015.09.006.CrossRefPubMedGoogle Scholar
  88. 88.
    Eisen DP, Minchinton RM. Impact of mannose-binding lectin on susceptibility to infectious diseases. Clin Infect Dis. 2003;37(11):1496–505.  https://doi.org/10.1086/379324.CrossRefPubMedGoogle Scholar
  89. 89.
    Sprong T, van Deuren M. Mannose-binding lectin: ancient molecule, interesting future. Clin Infect Dis. 2008;47(4):517–8.  https://doi.org/10.1086/590007.CrossRefPubMedGoogle Scholar
  90. 90.
    Lambourne J, Agranoff D, Herbrecht R, Troke PF, Buchbinder A, Willis F, et al. Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis. 2009;49(10):1486–91.  https://doi.org/10.1086/644619.CrossRefPubMedGoogle Scholar
  91. 91.
    Jaillon S, Moalli F, Ragnarsdottir B, Bonavita E, Puthia M, Riva F, et al. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity. 2014;40(4):621–32.  https://doi.org/10.1016/j.immuni.2014.02.015.CrossRefPubMedGoogle Scholar
  92. 92.
    Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–32.  https://doi.org/10.1056/NEJMoa1211161.CrossRefPubMedGoogle Scholar
  93. 93.
    Wojtowicz A, Lecompte TD, Bibert S, Manuel O, Rueger S, Berger C, et al. PTX3 polymorphisms and invasive mold infections after solid organ transplant. Clin Infect Dis. 2015;61(4):619–22.  https://doi.org/10.1093/cid/civ386.CrossRefPubMedGoogle Scholar
  94. 94.
    Cunha C, Monteiro AA, Oliveira-Coelho A, Kuhne J, Rodrigues F, Sasaki SD, et al. PTX3-based genetic testing for risk of aspergillosis after lung transplant. Clin Infect Dis. 2015;61(12):1893–4.  https://doi.org/10.1093/cid/civ679.CrossRefPubMedGoogle Scholar
  95. 95.
    Mauri T, Coppadoro A, Bombino M, Bellani G, Zambelli V, Fornari C, et al. Alveolar pentraxin 3 as an early marker of microbiologically confirmed pneumonia: a threshold-finding prospective observational study. Crit Care. 2014;18(5):562.  https://doi.org/10.1186/s13054-014-0562-5.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Carvalho A, Cunha C, Bistoni F, Romani L. Immunotherapy of aspergillosis. Clin Microbiol Infect (The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases). 2012;18(2):120–5.  https://doi.org/10.1111/j.1469-0691.2011.03681.x.CrossRefGoogle Scholar
  97. 97.
    Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS, et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet. 2008;4(6):e1000101.  https://doi.org/10.1371/journal.pgen.1000101.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Notarangelo LD, Badolato R. Leukocyte trafficking in primary immunodeficiencies. J Leukoc Biol. 2009;85(3):335–43.  https://doi.org/10.1189/jlb.0808474.CrossRefPubMedGoogle Scholar
  99. 99.
    Lo Giudice P, Campo S, De Santis R, Salvatori G. Effect of PTX3 and voriconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2012;56(12):6400–2.  https://doi.org/10.1128/AAC.01000-12.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Marra E, Sousa VL, Gaziano R, Pacello ML, Arseni B, Aurisicchio L, et al. Efficacy of PTX3 and posaconazole combination in a rat model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2014;58(10):6284–6.  https://doi.org/10.1128/AAC.03038-14.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Oliveira-Coelho A, Rodrigues F, Campos A Jr, Lacerda JF, Carvalho A, Cunha C. Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Front Microbiol. 2015;6:411.  https://doi.org/10.3389/fmicb.2015.00411.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Kumar V, Cheng SC, Johnson MD, Smeekens SP, Wojtowicz A, Giamarellos-Bourboulis E, et al. Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun. 2014;5:4675.  https://doi.org/10.1038/ncomms5675.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, van Diemen C, et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun. 2013;4:1342.  https://doi.org/10.1038/ncomms2343.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Fairfax BP, Knight JC. Genetics of gene expression in immunity to infection. Curr Opin Immunol. 2014;30C:63–71.  https://doi.org/10.1016/j.coi.2014.07.001.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristina Cunha
    • 1
    • 2
  • Samuel M. Gonçalves
    • 1
    • 2
  • Agostinho Carvalho
    • 1
    • 2
  1. 1.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations