Specific Adoptive T-Cell Therapy for Viral and Fungal Infections

  • Lawrence G. LumEmail author
  • Catherine M. Bollard


Despite advances in anti-infective agents, viral and fungal infections after hematopoietic stem cell transplantation (HSCT) continue to cause life-threatening complications that limit the success of HSCT. Early adoptive T-cell immunotherapy studies showed that administration of allogeneic virus-specific cytotoxic T lymphocytes (vCTL) can prevent and control viral infections and reconstitute antiviral immunity to cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Advances in immunobiology, in vitro culture technology, and current good manufacturing practice (cGMP) have provided opportunities for advancing adoptive cell therapy for viral infections: (1) T cells have been expanded targeting multiple pathogens; (2) vCTL production no longer requires viral infection or viral vector transduction of antigen-presenting cells (APCs); (3) the source of lymphocytes is no longer restricted to donors who are immune to the pathogens; (4) naive T cells have been redirected with chimeric antigen receptor T cells (CARTs) or armed with bispecific antibody-armed T cells (BATs) to mediate vCTL activity; (5) these technologies could be combined to targeted multiple viral or fungal pathogens; and (6) pathogen-specific T-cell products manufactured from third parties and banked for “off-the-shelf” use post-HSCT may soon become a reality.


Adoptive immunotherapy Stem cell transplantation Virus-specific cytotoxic T cells Bispecific antibody-armed T cells Chimeric antigen receptor T cells Viral infections 



Special thanks to the clinical coordinators for dedicating their efforts to serve the immunotherapy patients. We thank Manley Huang for his thoughtful reading of the chapter. The studies were supported in part by R01 CA140314 (LGL) and R01 CA182526 (LGL), Translational Grants #6092-09 (LGL) and #6066-06 (LGL) from the Leukemia & Lymphoma Society, and UVA Cancer Center Support Grant NCI 5P30CA044579-24. LGL is a founder of Transtarget, Inc. CMB is supported in part by the NICHD K12-HD-001399 award to MDK and CPRIT R01 RP100469 and NCI P01 CA148600-02 awards to CMB.


  1. 1.
    Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101:407–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Brunstein CG, Weisdorf DJ, DeFor T, et al. Marked increased risk of Epstein-Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood. 2006;108:2874–80.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Myers GD, Krance RA, Weiss H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant. 2005;36:1001–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Neofytos D, Horn D, Anaissie E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48:265–73.CrossRefPubMedGoogle Scholar
  5. 5.
    Avery R. Update in management of ganciclovir-resistant cytomegalovirus infection. Curr Opin Infect Dis. 2008;21:433–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Biron KK. Antiviral drugs for cytomegalovirus diseases. Antivir Res. 2006;71:154–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Nichols WG, Corey L, Gooley T, et al. Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood. 2001;97:867–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Ljungman P, Deliliers GL, Platzbecker U, et al. Cidofovir for cytomegalovirus infection and disease in allogeneic stem cell transplant recipients. The Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2001;97:388–92.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuehnle I, Huls MH, Liu Z, et al. CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood. 2000;95:1502–5.PubMedGoogle Scholar
  10. 10.
    Plotkin S. The history of vaccination against cytomegalovirus. Med Microbiol Immunol. 2015;204:247–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99:3916–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Hebart H, Einsele H. Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol. 2004;65:432–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Herr W, Plachter B. Cytomegalovirus and varicella-zoster virus vaccines in hematopoietic stem cell transplantation. Expert Rev Vaccines. 2009;8:999–1021.PubMedCrossRefGoogle Scholar
  14. 14.
    Papadopoulos EB, Ladanyi M, Emanuel D, et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N Engl J Med. 1994;330:1185–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Riddell SR, Greenberg PD. The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods. 1990;128:189–201.PubMedCrossRefGoogle Scholar
  16. 16.
    Riddell SR, Watanabe KS, Goodrich JM, et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257:238–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Slezak SL, Bettinotti M, Selleri S, et al. CMV pp65 and IE-1 T cell epitopes recognized by healthy subjects. J Transl Med. 2007;5:17.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Leen AM, Christin A, Khalil M, et al. Identification of hexon-specific CD4 and CD8 T-cell epitopes for vaccine and immunotherapy. J Virol. 2008;82:546–54.PubMedCrossRefGoogle Scholar
  19. 19.
    Bollard CM, Rooney CM, Heslop HE. T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nat Rev Clin Oncol. 2012;9:510–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hanley PJ, Cruz CR, Savoldo B, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114:1958–67.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114:4283–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sili U, Huls MH, Davis AR, et al. Large-scale expansion of dendritic cell-primed polyclonal human cytotoxic T-lymphocyte lines using lymphoblastoid cell lines for adoptive immunotherapy. J Immunother. 2003;26:241–56.PubMedCrossRefGoogle Scholar
  23. 23.
    Kern F, Faulhaber N, Frommel C, et al. Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur J Immunol. 2000;30:1676–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Hanley PJ, Shaffer DR, Cruz CR, et al. Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein-Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy. 2011;13:976–86.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Lucas KG, Sun Q, Burton RL, et al. A phase I-II trial to examine the toxicity of CMV- and EBV-specific cytotoxic T lymphocytes when used for prophylaxis against EBV and CMV disease in recipients of CD34-selected/T cell-depleted stem cell transplants. HumGene Ther. 2000;11:1453–63.Google Scholar
  27. 27.
    Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–55.PubMedGoogle Scholar
  28. 28.
    Heslop HE, Brenner MK, Rooney C, et al. Administration of neomycin-resistance-gene-marked EBV-specific cytotoxic T lymphocytes to recipients of mismatched-related or phenotypically similar unrelated donor marrow grafts. Hum Gene Ther. 1994;5:381–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Bollard CM, Cooper LJ, Heslop HE. Immunotherapy targeting EBV-expressing lymphoproliferative diseases. Best Pract Res Clin Haematol. 2008;21:405–20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Savoldo B, Huls MH, Liu Z, et al. Autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for the treatment of persistent active EBV infection. Blood. 2002;100:4059–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Bollard CM, Kuehnle I, Leen A, et al. Adoptive immunotherapy for posttransplantation viral infections. Biol Blood Marrow Transplant. 2004;10:143–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Gattinoni L, Klebanoff CA, Palmer DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest. 2005;115:1616–26.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Heslop HE, Slobod KS, Pule MA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Melenhorst JJ, Leen AM, Bollard CM, et al. Allogeneic virus-specific T cells with HLA alloreactivity do not produce GVHD in human subjects. Blood. 2010;116:4700–2.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Trivedi D, Williams RY, O'Reilly RJ, et al. Generation of CMV-specific T lymphocytes using protein-spanning pools of pp65-derived overlapping pentadecapeptides for adoptive immunotherapy. Blood. 2005;105:2793–801.PubMedCrossRefGoogle Scholar
  37. 37.
    Gerdemann U, Keirnan JM, Katari UL, et al. Rapidly generated multivirus-specific cytotoxic T lymphocytes for the prophylaxis and treatment of viral infections. Mol Ther. 2012;20:1622–32.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hanley PJ, Cruz RY, Melenhorst J, Scheinberg P, Blaney J, Savoldo B, Dotti G, Heslop HE, Rooney C, Shpall EJ, Barrett AJ, Rodgers J, Bollard CM. Naïve T-cell-derived CTL recognize atypical epitopes of CMVpp65 with higher avidity than CMV-seropositive donor-derived CTL – a basis for treatment of post-transplant viral infection by adoptive transfer of T-cells from virus-naïve donors. ISCT 2013 annual meeting (Abstract), 2013.Google Scholar
  39. 39.
    Berger C, Jensen MC, Lansdorp PM, et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118:294–305.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Willinger T, Freeman T, Hasegawa H, et al. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol. 2005;175:5895–903.PubMedCrossRefGoogle Scholar
  41. 41.
    Sellar RS, Peggs KS. The role of virus-specific adoptive T-cell therapy in hematopoietic transplantation. Cytotherapy. 2012;14:391–400.PubMedCrossRefGoogle Scholar
  42. 42.
    Hansen SG, Powers CJ, Richards R, et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science. 2010;328:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Neudorfer J, Schmidt B, Huster KM, et al. Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods. 2007;320:119–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmitt A, Tonn T, Busch DH, et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion. 2011;51:591–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Janeway C. Immunobiology : the immune system in health and disease. 6th ed. New York: Garland Science; 2005.Google Scholar
  46. 46.
    June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015;7:280ps7.PubMedCrossRefGoogle Scholar
  47. 47.
    Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21:215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother. 1997;45:131–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Schub A, Schuster IG, Hammerschmidt W, et al. CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol. 2009;183:6819–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Scholten KB, Turksma AW, Ruizendaal JJ, et al. Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med. 2011;9:147.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gehring AJ, Xue SA, Ho ZZ, et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol. 2011;55:103–10.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang Y, Liu Y, Moxley KM, et al. Transduction of human T cells with a novel T-cell receptor confers anti-HCV reactivity. PLoS Pathog. 2010;6:e1001018.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Luo W, Zhang XB, Huang YT, et al. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med (Berl). 2011;89:903–13.CrossRefGoogle Scholar
  54. 54.
    Oh HL, Chia A, Chang CX, et al. Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. J Virol. 2011;85:10464–71.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Roan NR, Starnbach MN. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. J Immunol. 2006;177:7974–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Ueno T, Fujiwara M, Tomiyama H, et al. Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific alphabeta TCR genes. Eur J Immunol. 2004;34:3379–88.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Masiero S, Del Vecchio C, Gavioli R, et al. T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120. Gene Ther. 2005;12:299–310.PubMedCrossRefGoogle Scholar
  58. 58.
    Sahu GK, Sango K, Selliah N, et al. Anti-HIV designer T cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells. Virology. 2013;446:268–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bitton N, Verrier F, Debre P, et al. Characterization of T cell-expressed chimeric receptors with antibody-type specificity for the CD4 binding site of HIV-1 gp120. Eur J Immunol. 1998;28:4177–87.PubMedCrossRefGoogle Scholar
  60. 60.
    Joseph A, Zheng JH, Follenzi A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008;82:3078–89.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kumaresan PR, Manuri PR, Albert ND, et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A. 2014;111:10660–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cobbold M, Khan N, Pourgheysari B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202:379–86.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116:4360–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Peggs KS, Thomson K, Samuel E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52:49–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Haque T, Amlot PL, Helling N, et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol. 1998;160:6204–9.PubMedGoogle Scholar
  66. 66.
    Haque T, Taylor C, Wilkie GM, et al. Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation. 2001;72:1399–402.PubMedCrossRefGoogle Scholar
  67. 67.
    Haque T, Wilkie GM, Taylor C, et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet. 2002;360:436–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Haque T, Wilkie GM, Jones MM, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110:1123–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Uhlin M, Okas M, Gertow J, et al. A novel haplo-identical adoptive CTL therapy as a treatment for EBV-associated lymphoma after stem cell transplantation. Cancer Immunol Immunother. 2010;59:473–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Moosmann A, Bigalke I, Tischer J, et al. Effective and long-term control of EBV PTLD after transfer of peptide-selected T cells. Blood. 2010;115:2960–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Barker JN, Doubrovina E, Sauter C, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116:5045–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Basso S, Zecca M, Calafiore L, et al. Successful treatment of a classic Hodgkin lymphoma-type post-transplant lymphoproliferative disorder with tailored chemotherapy and Epstein-Barr virus-specific cytotoxic T lymphocytes in a pediatric heart transplant recipient. Pediatr Transplant. 2013;17:E168–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Qasim W, Derniame S, Gilmour K, et al. Third-party virus-specific T cells eradicate adenoviraemia but trigger bystander graft-versus-host disease. Br J Haematol. 2011;154:150–3.PubMedCrossRefGoogle Scholar
  74. 74.
    Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.CrossRefPubMedGoogle Scholar
  75. 75.
    Lieberman J, Skolnik PR, Parkerson GR 3rd, et al. Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 1997;90:2196–206.PubMedGoogle Scholar
  76. 76.
    Mitsuyasu RT, Anton PA, Deeks SG, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 2000;96:785–93.PubMedGoogle Scholar
  77. 77.
    Deeks SG, Wagner B, Anton PA, et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther. 2002;5:788–97.PubMedCrossRefGoogle Scholar
  78. 78.
    Tebas P, Stein D, Binder-Scholl G, et al. Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood. 2013;121:1524–33.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Balduzzi A, Lucchini G, Hirsch HH, et al. Polyomavirus JC-targeted T-cell therapy for progressive multiple leukoencephalopathy in a hematopoietic cell transplantation recipient. Bone Marrow Transplant. 2011;46:987–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Uhlin M, Gertow J, Uzunel M, et al. Rapid salvage treatment with virus-specific T cells for therapy-resistant disease. Clin Infect Dis. 2012;55:1064–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106:4397–406.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006;12:1160–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Micklethwaite KP, Clancy L, Sandher U, et al. Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood. 2008;112:3974–81.PubMedCrossRefGoogle Scholar
  85. 85.
    Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121:5113–23.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gerdemann U, Katari UL, Papadopoulou A, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21:2113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Blyth E, Clancy L, Simms R, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121:3745–58.PubMedCrossRefGoogle Scholar
  88. 88.
    Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6:242ra83.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lum LG, Thakur A, Al-Kadhimi Z, et al. Targeted T-cell therapy in stage IV breast cancer: a phase I clinical trial. Clin Cancer Res. 2015;21:2305–14.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Vaishampayan UN, Thakur A, Rathore R, et al. Phase I study of anti-CD3 x anti-Her2 bispecific antibody in metastatic castrate resistance prostate cancer patients. Prostate Cancer. 2015;2015:1–10.CrossRefGoogle Scholar
  91. 91.
    Reusch U, Sundaram M, Davol PA, et al. Anti-CD3 x anti-EGFR bispecific antibody redirects T cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin Cancer Res. 2006;12:183–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Gall JM, Davol PA, Grabert RC, et al. T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20+ malignant B-cells and bypass complement-mediated Rituximab-resistance in vitro. Exp Hematol. 2005;33:452–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Lum LG, Thakur A, Liu Q, et al. CD20-targeted T cells after stem cell transplantation for high risk and refractory non-Hodgkin’s lymphoma. Biol Blood Marrow Transplant. 2013;19:925–33.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lum LG, Thakur A, Pray C, et al. Multiple infusions of CD20-targeted T cells and low-dose IL-2 after SCT for high-risk non-Hodgkin’s lymphoma: a pilot study. Bone Marrow Transplant. 2014;49:73–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Lum LG, Ramesh M, Thakur A, et al. Targeting cytomegalovirus-infected cells using T cells armed with anti-CD3× anti-CMV bispecific antibody. Biol Blood Marrow Transplant. 2012;18:1012–22.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Vera JF, Brenner LJ, Gerdemann U, et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33:305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Lam S, Bollard C. T-cell therapies for HIV. Immunotherapy. 2013;5:407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Didigu CA, Wilen CB, Wang J, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2014;123:61–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ramos CA, Narala N, Vyas GM, et al. Human papillomavirus type 16 E6/E7-specific cytotoxic T lymphocytes for adoptive immunotherapy of HPV-associated malignancies. J Immunother. 2013;36:66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cruz CR, Hanley PJ, Liu H, et al. Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy. 2010;12:743–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Xue SA, Gao L, Ahmadi M, et al. Human MHC class I-restricted high avidity CD4 T cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo. Oncoimmunology. 2013;2:e22590.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Frumento G, Zheng Y, Aubert G, et al. Cord blood T cells retain early differentiation phenotype suitable for immunotherapy after TCR gene transfer to confer EBV specificity. Am J Transplant. 2013;13:45–55.PubMedCrossRefGoogle Scholar
  103. 103.
    Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev. 2009;230:38–50.PubMedCrossRefGoogle Scholar
  104. 104.
    Romani L. Immunity to fungal infections. Nat Rev Immunol. 2004;4:1–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Groll AH, McNeil Grist L. Current challenges in the diagnosis and management of invasive fungal infections: report from the 15th international symposium on infections in the immunocompromised host: Thessaloniki, Greece, 22–25. Int J Antimicrob Agents. 2008;33:101–4. 2009PubMedCrossRefGoogle Scholar
  106. 106.
    Beck O, Topp MS, Koehl U, et al. Generation of highly purified and functionally active human TH1 cells against Aspergillus fumigatus. Blood. 2006;107:2562–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Khanna N, Stuehler C, Conrad B, et al. Generation of a multipathogen-specific T-cell product for adoptive immunotherapy based on activation-dependent expression of CD154. Blood. 2011;118:1121–31.PubMedCrossRefGoogle Scholar
  108. 108.
    Tramsen L, Schmidt S, Boenig H, et al. Clinical-scale generation of multi-specific anti-fungal T cells targeting Candida, Aspergillus and mucormycetes. Cytotherapy. 2013;15:344–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Tramsen L, Koehl U, Tonn T, et al. Clinical-scale generation of human anti-Aspergillus T cells for adoptive immunotherapy. Bone Marrow Transplant. 2009;43:13–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Gaundar SS, Clancy L, Blyth E, et al. Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy. 2012;14:1119–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Tramsen L, Beck O, Schuster FR, et al. Generation and characterization of anti-Candida T cells as potential immunotherapy in patients with Candida infection after allogeneic hematopoietic stem-cell transplant. J Infect Dis. 2007;196:485–92.PubMedCrossRefGoogle Scholar
  112. 112.
    Stuehler C, Khanna N, Bozza S, et al. Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood. 2011;117:5881–91.PubMedCrossRefGoogle Scholar
  113. 113.
    Jolink H, Meijssen IC, Hagedoorn RS, et al. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals. J Infect Dis. 2013;208:847–56.PubMedCrossRefGoogle Scholar
  114. 114.
    Feng CG, Britton WJ. CD4+ and CD8+ T cells mediate adoptive immunity to aerosol infection of Mycobacterium bovis bacillus Calmette-Guerin. J Infect Dis. 2000;181:1846–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Stemberger C, Graef P, Odendahl M, et al. Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood. 2014;124:628–37.PubMedCrossRefGoogle Scholar
  116. 116.
    Polley R, Stager S, Prickett S, et al. Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun. 2006;74:773–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Gomez MJ, Maras B, Barca A, et al. Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunistic human pathogen Candida albicans. Infect Immun. 2000;68:694–701.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Schmidt S, Tramsen L, Perkhofer S, et al. Characterization of the cellular immune responses to Rhizopus oryzae with potential impact on immunotherapeutic strategies in hematopoietic stem cell transplantation. J Infect Dis. 2012;206:135–9.PubMedCrossRefGoogle Scholar
  119. 119.
    De Angelis B, Dotti G, Quintarelli C, et al. Generation of Epstein-Barr virus-specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood. 2009;114:4784–91.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Brewin J, Mancao C, Straathof K, et al. Generation of EBV-specific cytotoxic T cells that are resistant to calcineurin inhibitors for the treatment of posttransplantation lymphoproliferative disease. Blood. 2009;114:4792–803.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cellular Therapy and Stem Cell Transplant Program, Emily Couric Cancer CenterUniversity of VirginiaCharlottesvilleUSA
  2. 2.Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children’s National Health SystemWashington, DCUSA

Personalised recommendations