Infections in HIV-Infected Patients

  • Onyema Ogbuagu
  • R. Douglas BruceEmail author


People living with human immunodeficiency virus (HIV) are at risk for serious and life-threatening infectious complications. Indeed, infections constitute the chief cause of mortality in untreated patients. While the majority of the infections occur in individuals with acquired immunodeficiency syndrome (AIDS), the vulnerability to certain infections remains high even in patients with higher CD4 counts as immune defects occur very early in infection and persist even in patients who have experienced immune reconstitution following the use of combination antiretroviral therapy (cART). The association between CD4 counts and vulnerability to certain infections allows the clinician to quite accurately predict which infections are likely or unlikely to occur in an individual based on the CD4 count. In addition, HIV interacts with other pathogens that impact the natural history of both infections and may result in accelerated sequelae of infection. This chapter will highlight the epidemiology, pathogenesis, clinical presentation, management, prognosis, and prevention of common infections that occur in HIV-infected patients.


Human immunodeficiency virus (HIV) Acquired immunodeficiency syndrome (AIDS) Immune reconstitution inflammatory syndrome (IRIS) Human herpes virus (HHV) Antiretroviral therapy Mycobacterium tuberculosis Progressive multifocal leukoencephalopathy (PML) Toxoplasmosis Histoplasmosis 


  1. 1.
    (CDC) CfDC. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men – New York City and California. MMWR Morb Mortal Wkly Rep. 1981;30(25):305–8.Google Scholar
  2. 2.
    Jaffe HW, Bregman DJ, Selik RM. Acquired immune deficiency syndrome in the United States: the first 1,000 cases. J Infect Dis. 1983;148(2):339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Harris C, Small CB, Klein RS, Friedland GH, Moll B, Emeson EE, et al. Immunodeficiency in female sexual partners of men with the acquired immunodeficiency syndrome. N Engl J Med. 1983;308(20):1181–4.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    (CDC) Cfdc. A cluster of Kaposi’s sarcoma and Pneumocystis carinii pneumonia among homosexual male residents of Los Angeles and Orange Counties, California. MMWR Morb Mortal Wkly Rep. 1982;31(23):305–7.Google Scholar
  5. 5.
    Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science (New York, NY). 1983;220(4599):868–71.CrossRefGoogle Scholar
  6. 6.
    Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science (New York, NY). 1983;220(4599):865–7.CrossRefGoogle Scholar
  7. 7.
    Editors. Francoise Barre-Sinoussi and Luc Montagnier share the 2008 Nobel Prize for Physiology and Medicine for their discovery of the human immunodeficiency virus (HIV). AIDS (London, England). 2009;23(1):1.Google Scholar
  8. 8.
    Kilmarx PH. Global epidemiology of HIV. Curr Opin HIV AIDS. 2009;4(4):240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    (WHO) WHO. Global summary of the AIDS epidemic 2014. 2015.Google Scholar
  10. 10.
    UNAIDS. 2030: ending the AIDS epidemic. Fact Sheet 2015. 2015.Google Scholar
  11. 11.
    Frieden TR, Foti KE, Mermin J. Applying public health principles to the HIV epidemic – how are we doing? N Engl J Med. 2015;373(23):2281–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Luzuriaga K, Mofenson LM. Challenges in the elimination of pediatric HIV-1 infection. N Engl J Med. 2016;374(8):761–70.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Liotta G, Marazzi MC, Mothibi KE, Zimba I, Amangoua EE, Bonje EK, et al. Elimination of mother-to-child transmission of HIV infection: the drug resource enhancement against AIDS and malnutrition model. Int J Environ Res Public Health. 2015;12(10):13224–39.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hoos D, El-Sadr WM, Dehne KL. Getting the balance right: scaling-up treatment and prevention. Glob Publ Health. 2017 Apr;12(4):483-497.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Althoff KN, Rebeiro P, Brooks JT, Buchacz K, Gebo K, Martin J, et al. Disparities in the quality of HIV care when using US department of health and human services indicators. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2014;58(8):1185–9.CrossRefGoogle Scholar
  16. 16.
    Ogbuagu O, Bruce RD. Reaching the unreached: treatment as prevention as a workable strategy to mitigate HIV and its consequences in high-risk groups. Curr HIV/AIDS Rep. 2014;11(4):505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Palella FJ Jr, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Smith CJ, Ryom L, Weber R, Morlat P, Pradier C, Reiss P, et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. Lancet (London, England). 2014;384(9939):241–8.CrossRefGoogle Scholar
  19. 19.
    Bowen DL, Lane HC, Fauci AS. Immunopathogenesis of the acquired immunodeficiency syndrome. Ann Intern Med. 1985;103(5):704–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Miedema F, Petit AJ, Terpstra FG, Schattenkerk JK, de Wolf F, Al BJ, et al. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men. HIV affects the immune system before CD4+ T helper cell depletion occurs. J Clin Invest. 1988;82(6):1908–14.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ciobanu N, Welte K, Kruger G, Venuta S, Gold J, Feldman SP, et al. Defective T-cell response to PHA and mitogenic monoclonal antibodies in male homosexuals with acquired immunodeficiency syndrome and its in vitro correction by interleukin 2. J Clin Immunol. 1983;3(4):332–40.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Miedema F. Immunological abnormalities in the natural history of HIV infection: mechanisms and clinical relevance. Immunodefic Rev. 1992;3(3):173–93.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Katz JD, Mitsuyasu R, Gottlieb MS, Lebow LT, Bonavida B. Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. II. Normal antibody-dependent cellular cytotoxicity (ADCC) mediated by effector cells defective in natural killer (NK) cytotoxicity. J Immunol (Baltimore, Md: 1950). 1987;139(1):55–60.Google Scholar
  24. 24.
    Schroff RW, Gottlieb MS, Prince HE, Chai LL, Fahey JL. Immunological studies of homosexual men with immunodeficiency and Kaposi’s sarcoma. Clin Immunol Immunopathol. 1983;27(3):300–14.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Wu L. Biology of HIV mucosal transmission. Curr Opin HIV AIDS. 2008;3(5):534–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Moore RD, Chaisson RE. Natural history of opportunistic disease in an HIV-infected urban clinical cohort. Ann Intern Med. 1996;124(7):633–42.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gianella S, Massanella M, Wertheim JO, Smith DM. The sordid affair between human herpesvirus and HIV. J Infect Dis. 2015;212(6):845–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Miller CS, Berger JR, Mootoor Y, Avdiushko SA, Zhu H, Kryscio RJ. High prevalence of multiple human herpesviruses in saliva from human immunodeficiency virus-infected persons in the era of highly active antiretroviral therapy. J Clin Microbiol. 2006;44(7):2409–15.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Munawwar A, Singh S. Human herpesviruses as Copathogens of HIV infection, their role in HIV transmission, and disease progression. J Lab Phys. 2016;8(1):5–18.Google Scholar
  30. 30.
    Gianella S, Anderson CM, Var SR, Oliveira MF, Lada SM, Vargas MV, et al. Replication of human herpesviruses is associated with higher HIV DNA levels during antiretroviral therapy started at early phases of HIV infection. J Virol. 2016;90(8):3944–52.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Griffiths PD. CMV as a cofactor enhancing progression of AIDS. J Clin Virol: Off Publ Pan Am Soc Clin Virol. 2006;35(4):489–92.CrossRefGoogle Scholar
  32. 32.
    Lisco A, Vanpouille C, Margolis L. Coinfecting viruses as determinants of HIV disease. Curr HIV/AIDS Rep. 2009;6(1):5–12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pinzone MR, Berretta M, Cacopardo B, Nunnari G. Epstein-barr virus- and Kaposi sarcoma-associated herpesvirus-related malignancies in the setting of human immunodeficiency virus infection. Semin Oncol. 2015;42(2):258–71.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nahmias AJ, Lee FK, Beckman-Nahmias S. Sero-epidemiological and -sociological patterns of herpes simplex virus infection in the world. Scand J Infect Dis Suppl. 1990;69:19–36.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Steiner I, Kennedy PG, Pachner AR. The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. 2007;6(11):1015–28.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Koren M, Wang X, Blaylock JM, Okulicz JF, Whitman TJ, Deiss RG, et al. Brief report: the epidemiology of herpes simplex virus type 2 infections in a large cohort of HIV-infected patients, 2006–2014. Med Surveill Mon Rep. 2016;23(3):11–5.Google Scholar
  37. 37.
    Cohen JA, Sellers A, Sunil TS, Matthews PE, Okulicz JF. Herpes simplex virus seroprevalence and seroconversion among active duty US air force members with HIV infection. J Clin Virol: Off Publ Pan Am Soc Clin Virol. 2016;74:4–7.CrossRefGoogle Scholar
  38. 38.
    Mertz GJ. Epidemiology of genital herpes infections. Infect Dis Clin N Am. 1993;7(4):825–39.Google Scholar
  39. 39.
    Da Rosa-Santos OL, Goncalves da Silva A, Pereira AC Jr. Herpes simplex virus type 2 in Brazil: seroepidemiologic survey. Int J Dermatol. 1996;35(11):794–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186(Suppl 1):S3–28.PubMedCrossRefGoogle Scholar
  41. 41.
    Looker KJ, Garnett GP. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex Transm Infect. 2005;81(2):103–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ. Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS (London, England). 2006;20(1):73–83.CrossRefGoogle Scholar
  43. 43.
    Brown JM, Wald A, Hubbard A, Rungruengthanakit K, Chipato T, Rugpao S, et al. Incident and prevalent herpes simplex virus type 2 infection increases risk of HIV acquisition among women in Uganda and Zimbabwe. AIDS (London, England). 2007;21(12):1515–23.CrossRefGoogle Scholar
  44. 44.
    Freedman E, Mindel A. Epidemiology of herpes and HIV co-infection. J HIV Ther. 2004;9(1):4–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tan DH, Murphy K, Shah P, Walmsley SL. Herpes simplex virus type 2 and HIV disease progression: a systematic review of observational studies. BMC Infect Dis. 2013;13:502.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chu K, Jiamton S, Pepin J, Cowan F, Mahakkanukrauh B, Suttent R, et al. Association between HSV-2 and HIV-1 viral load in semen, cervico-vaginal secretions and genital ulcers of Thai men and women. Int J STD AIDS. 2006;17(10):681–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Kinchington PR, Leger AJ, Guedon JM, Hendricks RL. Herpes simplex virus and varicella zoster virus, the house guests who never leave. Herpesviridae. 2012;3(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    LeGoff J, Pere H, Belec L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol J. 2014;11:83.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Birkmann A, Zimmermann H. HSV antivirals – current and future treatment options. Curr Opin Virol. 2016;18:9–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen Y, Scieux C, Garrait V, Socie G, Rocha V, Molina JM, et al. Resistant herpes simplex virus type 1 infection: an emerging concern after allogeneic stem cell transplantation. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2000;31(4):927–35.CrossRefGoogle Scholar
  51. 51.
    Brown M, Scarborough M, Brink N, Manji H, Miller R. Varicella zoster virus-associated neurological disease in HIV-infected patients. Int J STD AIDS. 2001;12(2):79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gnann JW Jr. Varicella-zoster virus: atypical presentations and unusual complications. J Infect Dis. 2002;186(Suppl 1):S91–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Davidovici BB, Balicer RD, Klement E, Green MS, Mendelson E, Smetana Z, et al. Comparison of the dynamics and correlates of transmission of Herpes Simplex Virus-1 (HSV-1) and Varicella-Zoster Virus (VZV) in a sample of the Israeli population. Eur J Epidemiol. 2007;22(9):641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    van Velzen M, Ouwendijk WJ, Selke S, Pas SD, van Loenen FB, Osterhaus AD, et al. Longitudinal study on oral shedding of herpes simplex virus 1 and varicella-zoster virus in individuals infected with HIV. J Med Virol. 2013;85(9):1669–77.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wharton M. The epidemiology of varicella-zoster virus infections. Infect Dis Clin N Am. 1996;10(3):571–81.CrossRefGoogle Scholar
  56. 56.
    Buchbinder SP, Katz MH, Hessol NA, Liu JY, O’Malley PM, Underwood R, et al. Herpes zoster and human immunodeficiency virus infection. J Infect Dis. 1992;166(5):1153–6.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Grabar S, Tattevin P, Selinger-Leneman H, de La Blanchardiere A, de Truchis P, Rabaud C, et al. Incidence of herpes zoster in HIV-infected adults in the combined antiretroviral therapy era: results from the FHDH-ANRS CO4 cohort. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2015;60(8):1269–77.CrossRefGoogle Scholar
  58. 58.
    Blank LJ, Polydefkis MJ, Moore RD, Gebo KA. Herpes zoster among persons living with HIV in the current antiretroviral therapy era. J Acquir Immune Defic Syndr. 2012;61(2):203–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jansen K, Haastert B, Michalik C, Guignard A, Esser S, Dupke S, et al. Incidence and risk factors of herpes zoster among hiv-positive patients in the german competence network for HIV/AIDS (KompNet): a cohort study analysis. BMC Infect Dis. 2013;13:372.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sauerbrei A. Diagnosis, antiviral therapy, and prophylaxis of varicella-zoster virus infections. Eur J Clin Microbiol Infect Dis: Off Publ Eur Soc Clin Microbiol. 2016;35(5):723–34.CrossRefGoogle Scholar
  61. 61.
    Aebi C, Ahmed A, Ramilo O. Bacterial complications of primary varicella in children. Clin Infect Dis: Off Publ Infect Dis Soc Am. 1996;23(4):698–705.CrossRefGoogle Scholar
  62. 62.
    De Broucker T, Mailles A, Chabrier S, Morand P, Stahl JP. Acute varicella zoster encephalitis without evidence of primary vasculopathy in a case-series of 20 patients. Clin Microbiol Infect. 2012;18(8):808–19.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009;8(8):731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Barnabas RV, Baeten JM, Lingappa JR, Thomas KK, Hughes JP, Mugo NR, et al. Acyclovir prophylaxis reduces the incidence of herpes zoster among HIV-infected individuals: results of a randomized clinical trial. J Infect Dis. 2016;213(4):551–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chaves SS, Lopez AS, Watson TL, Civen R, Watson B, Mascola L, et al. Varicella in infants after implementation of the US varicella vaccination program. Pediatrics. 2011;128(6):1071–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2014;58(1):1–10.CrossRefGoogle Scholar
  67. 67.
    Hales CM, Harpaz R, Ortega-Sanchez I, Bialek SR, Control CfD, Prevention. Update on recommendations for use of herpes zoster vaccine. MMWR Morb Mortal Wkly Rep. 2014;63(33):729–31.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372(22):2087–96.PubMedCrossRefGoogle Scholar
  69. 69.
    Siegel JD, Rhinehart E, Jackson M, Chiarello L. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control. 2007;35(10 Suppl 2):S65–164.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Balfour HH Jr, Sifakis F, Sliman JA, Knight JA, Schmeling DO, Thomas W. Age-specific prevalence of Epstein-Barr virus infection among individuals aged 6–19 years in the United States and factors affecting its acquisition. J Infect Dis. 2013;208(8):1286–93.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Dunmire SK, Grimm JM, Schmeling DO, Balfour HH Jr, Hogquist KA. The incubation period of primary Epstein-Barr virus infection: viral dynamics and immunologic events. PLoS Pathog. 2015;11(12):e1005286.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dunmire SK, Hogquist KA, Balfour HH. Infectious mononucleosis. Curr Top Microbiol Immunol. 2015;390(Pt 1):211–40.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Elgh F, Linderholm M. Evaluation of six commercially available kits using purified heterophile antigen for the rapid diagnosis of infectious mononucleosis compared with Epstein-Barr virus-specific serology. Clin Diagn Virol. 1996;7(1):17–21.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Ivers LC, Kim AY, Sax PE. Predictive value of polymerase chain reaction of cerebrospinal fluid for detection of Epstein-Barr virus to establish the diagnosis of HIV-related primary central nervous system lymphoma. Clin Infect Dis. 2004;38(11):1629–32.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Patrick LB, Mohile NA. Advances in primary central nervous system lymphoma. Curr Oncol Rep. 2015;17(12):60.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Abrey LE, Yahalom J, DeAngelis LM. Treatment for primary CNS lymphoma: the next step. J Clin Oncol: Off J Am Soc Clin Oncol. 2000;18(17):3144–50.CrossRefGoogle Scholar
  77. 77.
    Krishnan A, Zaia JA. HIV-associated non-Hodgkin lymphoma: viral origins and therapeutic options. Hematol Educ Prog Am Soc Hematol Am Soc Hematol Educ Prog. 2014;2014(1):584–9.Google Scholar
  78. 78.
    Adland E, Klenerman P, Goulder P, Matthews PC. Ongoing burden of disease and mortality from HIV/CMV coinfection in Africa in the antiretroviral therapy era. Front Microbiol. 2015;6:1016.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Reyburn HT, Mandelboim O, Vales-Gomez M, Davis DM, Pazmany L, Strominger JL. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature. 1997;386(6624):514–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton PD, et al. Primary cytomegalovirus infection in pregnancy: incidence, transmission to fetus, and clinical outcome. JAMA. 1986;256(14):1904–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Erice A, Tierney C, Hirsch M, Caliendo AM, Weinberg A, Kendall MA, et al. Cytomegalovirus (CMV) and human immunodeficiency virus (HIV) burden, CMV end-organ disease, and survival in subjects with advanced HIV infection (AIDS Clinical Trials Group Protocol 360). Clin Infect Dis: Off Publ Infect Dis Soc Am. 2003;37(4):567–78.CrossRefGoogle Scholar
  82. 82.
    Gohring K, Hamprecht K, Jahn G. Antiviral drug- and multidrug resistance in cytomegalovirus infected SCT patients. Comput Struct Biotechnol J. 2015;13:153–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Griffiths P, Lumley S. Cytomegalovirus. Curr Opin Infect Dis. 2014;27(6):554–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Verkaik NJ, Hoek RA, van Bergeijk H, van Hal PT, Schipper ME, Pas SD, et al. Leflunomide as part of the treatment for multidrug-resistant cytomegalovirus disease after lung transplantation: case report and review of the literature. Transplant Infect Dis: Off J Transplant Soc. 2013;15(6):E243–9.CrossRefGoogle Scholar
  85. 85.
    Mayaphi SH, Brauer M, Morobadi DM, Mazanderani AH, Mafuyeka RT, Olorunju SA, et al. Cytomegalovirus viral load kinetics in patients with HIV/AIDS admitted to a medical intensive care unit: a case for pre-emptive therapy. PLoS One. 2014;9(4):e93702.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mattioni S, Pavie J, Porcher R, Scieux C, Denis B, De Castro N, et al. Assessment of the efficacy and safety of pre-emptive anti-cytomegalovirus (CMV) therapy in HIV-infected patients with CMV viraemia. Int J STD AIDS. 2015;26(5):306–12.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Dolcetti R, Di Luca D, Carbone A, Mirandola P, De Vita S, Vaccher E, et al. Human herpesvirus 6 in human immunodeficiency virus-infected individuals: association with early histologic phases of lymphadenopathy syndrome but not with malignant lymphoproliferative disorders. J Med Virol. 1996;48(4):344–53.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Falasca F, Maida P, Gaeta A, Verzaro S, Mezzaroma I, Fantauzzi A, et al. Detection and quantification of EBV, HHV-6 and CMV DNA in the gastrointestinal tract of HIV-positive patients. Infection. 2014;42(6):1033–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Campadelli-Fiume G, Mirandola P, Menotti L. Human herpesvirus 6: an emerging pathogen. Emerg Infect Dis. 1999;5(3):353–66.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Luppi M, Torelli G. The new lymphotropic herpesviruses (HHV-6, HHV-7, HHV-8) and hepatitis C virus (HCV) in human lymphoproliferative diseases: an overview. Haematologica. 1996;81(3):265–81.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Uldrick TS, Wang V, O’Mahony D, Aleman K, Wyvill KM, Marshall V, et al. An interleukin-6-related systemic inflammatory syndrome in patients co-infected with Kaposi sarcoma-associated herpesvirus and HIV but without Multicentric Castleman disease. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2010;51(3):350–8.CrossRefGoogle Scholar
  92. 92.
    Mylona EE, Baraboutis IG, Lekakis LJ, Georgiou O, Papastamopoulos V, Skoutelis A. Multicentric Castleman’s disease in HIV infection: a systematic review of the literature. AIDS Rev. 2008;10(1):25–35.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Chabria S, Barakat L, Ogbuagu O. Steroid-exacerbated HIV-associated cutaneous Kaposi’s sarcoma immune reconstitution inflammatory syndrome: ‘Where a good intention turns bad’. Int J STD AIDS. 2016;27(11):1026–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Goncalves PH, Ziegelbauer J, Uldrick TS, Yarchoan R. Kaposi sarcoma herpesvirus-associated disorders and related diseases. Curr Opin HIV AIDS. 2016;12:47.CrossRefGoogle Scholar
  95. 95.
    Mosam A, Shaik F, Uldrick TS, Esterhuizen T, Friedland GH, Scadden DT, et al. A randomized controlled trial of highly active antiretroviral therapy versus highly active antiretroviral therapy and chemotherapy in therapy-naive patients with HIV-associated Kaposi sarcoma in South Africa. J Acquir Immune Defic Syndr. 2012;60(2):150–7.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Berger JR, Aksamit AJ, Clifford DB, Davis L, Koralnik IJ, Sejvar JJ, et al. PML diagnostic criteria: consensus statement from the AAN Neuroinfectious Disease Section. Neurology. 2013;80(15):1430–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Martinez MJ, Moreno C, Levican J, Pena M, Gaggero A, Chnaiderman J. BK and JC polyomavirus detection in leukocyte extracts of peripheral blood samples of HIV+ patients from the north area of Santiago. Rev Chilena Infectol: organo oficial Soc Chil Infectol. 2016;33(3):298–302.CrossRefGoogle Scholar
  98. 98.
    Akhgari S, Mohraz M, Azadmanesh K, Vahabpour R, Kazemimanesh M, Aghakhani A, et al. Frequency and subtype of BK virus infection in Iranian patients infected with HIV. Med Microbiol Immunol. 2016;205(1):57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Sundsfjord A, Flaegstad T, Flo R, Spein AR, Pedersen M, Permin H, et al. BK and JC viruses in human immunodeficiency virus type 1-infected persons: prevalence, excretion, viremia, and viral regulatory regions. J Infect Dis. 1994;169(3):485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Behzad-Behbahani A, Klapper PE, Vallely PJ, Cleator GM, Khoo SH. Detection of BK virus and JC virus DNA in urine samples from immunocompromised (HIV-infected) and immunocompetent (HIV-non-infected) patients using polymerase chain reaction and microplate hybridisation. J Clin Virol: Off Publ Pan Am Soc Clin Virol. 2004;29(4):224–9.CrossRefGoogle Scholar
  101. 101.
    Adang L, Berger J. Progressive multifocal leukoencephalopathy. F1000Research. 2015;4.Google Scholar
  102. 102.
    Rossi F, Li X, Jacobson L, Levine AJ, Chen Y, Palella FJ, et al. BK virus capsid antibodies are associated with protection against subsequent development of PML in HIV-infected patients. Virology. 2015;485:467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wuthrich C, Dang X, Westmoreland S, McKay J, Maheshwari A, Anderson MP, et al. Fulminant JC virus encephalopathy with productive infection of cortical pyramidal neurons. Ann Neurol. 2009;65(6):742–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    McGuire D, Barhite S, Hollander H, Miles M. JC virus DNA in cerebrospinal fluid of human immunodeficiency virus-infected patients: predictive value for progressive multifocal leukoencephalopathy. Ann Neurol. 1995;37(3):395–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Baharnoori M, Lyons J, Dastagir A, Koralnik I, Stankiewicz JM. Nonfatal PML in a patient with multiple sclerosis treated with dimethyl fumarate. Neurol (R) Neuroimmunol Neuroinflammation. 2016;3(5):e274.CrossRefGoogle Scholar
  106. 106.
    Casado JL, Corral I, Garcia J, Martinez-San Millan J, Navas E, Moreno A, et al. Continued declining incidence and improved survival of progressive multifocal leukoencephalopathy in HIV/AIDS patients in the current era. Eur J Clin Microbiol Infect Dis: Off Publ Eur Soc Clin Microbiol. 2014;33(2):179–87.CrossRefGoogle Scholar
  107. 107.
    Klein MB, Rockstroh JK, Wittkop L. Effect of coinfection with hepatitis C virus on survival of individuals with HIV-1 infection. Curr Opin HIV AIDS. 2016;11(5):521–6.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Platt L, Easterbrook P, Gower E, McDonald B, Sabin K, McGowan C, et al. Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect Dis. 2016;16(7):797–808.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Taddei TH, Lo Re V 3rd, Justice AC. HIV, aging, and viral coinfections: taking the long view. Curr HIV/AIDS Rep. 2016;13(5):269–78.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Stenkvist J, Nystrom J, Falconer K, Sonnerborg A, Weiland O. Occasional spontaneous clearance of chronic hepatitis C virus in HIV-infected individuals. J Hepatol. 2014;61(4):957–61.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wahle RC, Perez RM, Pereira PF, Oliveira EM, Emori CT, Uehara SN, et al. Hepatitis B virus reactivation after treatment for hepatitis C in hemodialysis patients with HBV/HCV coinfection. Brazilian J Infect Dis: Off Publ Braz Soc Infect Dis. 2015;19(5):533–7.CrossRefGoogle Scholar
  112. 112.
    Soriano V, Labarga P, de Mendoza C, Pena JM, Fernandez-Montero JV, Benitez L, et al. Emerging challenges in managing hepatitis B in HIV patients. Curr HIV/AIDS Rep. 2015;12(3):344–52.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Fung S, Kwan P, Fabri M, Horban A, Pelemis M, Hann HW, et al. Tenofovir disoproxil fumarate (TDF) vs. emtricitabine (FTC)/TDF in lamivudine resistant hepatitis B: a 5-year randomised study. J Hepatol. 2017 Jan;66(1):11-18.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Cox JT. Epidemiology and natural history of HPV. J Fam Pract. 2006;Suppl:3–9.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Moore RA, Ogilvie G, Fornika D, Moravan V, Brisson M, Amirabbasi-Beik M, et al. Prevalence and type distribution of human papillomavirus in 5,000 British Columbia women – implications for vaccination. Cancer Causes Control : CCC. 2009;20(8):1387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Mujuni F, Mirambo MM, Rambau P, Klaus K, Andreas M, Matovelo D, et al. Variability of high risk HPV genotypes among HIV infected women in Mwanza, Tanzania- the need for evaluation of current vaccine effectiveness in developing countries. Infect Agents Cancer. 2016;11:49.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Macleod IJ, O’Donnell B, Moyo S, Lockman S, Shapiro RL, Kayembe M, et al. Prevalence of human papillomavirus genotypes and associated cervical squamous intraepithelial lesions in HIV-infected women in Botswana. J Med Virol. 2011;83(10):1689–95.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Stuardo V, Agusti C, Godinez JM, Montoliu A, Torne A, Tarrats A, et al. Human papillomavirus infection in HIV-1 infected women in Catalonia (Spain): implications for prevention of cervical cancer. PLoS One. 2012;7(10):e47755.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Temmerman M, Tyndall MW, Kidula N, Claeys P, Muchiri L, Quint W. Risk factors for human papillomavirus and cervical precancerous lesions, and the role of concurrent HIV-1 infection. Int J Gynaecol Obstet: Off Organ Int Fed Gynaecol Obstet. 1999;65(2):171–81.CrossRefGoogle Scholar
  120. 120.
    Weaver BA. Epidemiology and natural history of genital human papillomavirus infection. J Am Osteopath Assoc. 2006;106(3 Suppl 1):S2–8.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Massad LS, Xie X, Darragh T, Minkoff H, Levine AM, Watts DH, et al. Genital warts and vulvar intraepithelial neoplasia: natural history and effects of treatment and human immunodeficiency virus infection. Obstet Gynecol. 2011;118(4):831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Park IU, Introcaso C, Dunne EF. Human papillomavirus and genital warts: a review of the evidence for the 2015 centers for disease control and prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2015;61(Suppl 8):S849–55.CrossRefGoogle Scholar
  123. 123.
    Doorbar J. Model systems of human papillomavirus-associated disease. J Pathol. 2016;238(2):166–79.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Lee SJ, Yang A, Wu TC, Hung CF. Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research. J Gynecol Oncol. 2016;27(5):e51.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Committee on Practice Bulletins—Gynecology. Practice Bulletin No. 168: cervical cancer screening and prevention. Obstet Gynecol. 2016;128(4):e111–30.CrossRefGoogle Scholar
  126. 126.
    Huson MA, Stolp SM, van der Poll T, Grobusch MP. Community-acquired bacterial bloodstream infections in HIV-infected patients: a systematic review. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2014;58(1):79–92.CrossRefGoogle Scholar
  127. 127.
    Flagg EW, Weinstock HS, Frazier EL, Valverde EE, Heffelfinger JD, Skarbinski J. Bacterial sexually transmitted infections among HIV-infected patients in the United States: estimates from the Medical Monitoring Project. Sex Transm Dis. 2015;42(4):171–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Sogaard OS, Reekie J, Ristola M, Jevtovic D, Karpov I, Beniowski M, et al. Severe bacterial non-aids infections in HIV-positive persons: incidence rates and risk factors. J Infect. 2013;66(5):439–46.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Uhlenkott MC, Buskin SE, Kahle EM, Barash E, Aboulafia DM. Causes of death in the era of highly active antiretroviral therapy: a retrospective analysis of a hybrid hematology-oncology and HIV practice and the Seattle/King county adult/adolescent spectrum of HIV-related diseases project. Am J Med Sci. 2008;336(3):217–23.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Moir S, Malaspina A, Ogwaro KM, Donoghue ET, Hallahan CW, Ehler LA, et al. HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proc Natl Acad Sci U S A. 2001;98(18):10362–7.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Rook AH, Masur H, Lane HC, Frederick W, Kasahara T, Macher AM, et al. Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immune deficiency syndrome. J Clin Invest. 1983;72(1):398–403.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Grassi F, Hosmalin A, McIlroy D, Calvez V, Debre P, Autran B. Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS (London, England). 1999;13(7):759–66.CrossRefGoogle Scholar
  133. 133.
    Ndakotsu MA, Salawu L, Durosinmi MA. Relation between erythrocyte sedimentation rate, clinical and immune status in HIV-infected patients. Niger J Med: J Natl Assoc Res Doctors Niger. 2008;17(4):420–2.CrossRefGoogle Scholar
  134. 134.
    Phatlhane DV, Ipp H, Erasmus RT, Zemlin AE. Evaluating the use of procalcitonin in an asymptomatic, HIV-infected antiretroviral therapy-naive, South African cohort. Clin Chem Lab Med. 2016;54(3):501–8.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Schleicher GK, Herbert V, Brink A, Martin S, Maraj R, Galpin JS, et al. Procalcitonin and C-reactive protein levels in HIV-positive subjects with tuberculosis and pneumonia. Eur Respir J. 2005;25(4):688–92.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Berger BJ, Hussain F, Roistacher K. Bacterial infections in HIV-infected patients. Infect Dis Clin N Am. 1994;8(2):449–65.Google Scholar
  137. 137.
    Gasquet S, Maurin M, Brouqui P, Lepidi H, Raoult D. Bacillary angiomatosis in immunocompromised patients. AIDS (London, England). 1998;12(14):1793–803.CrossRefGoogle Scholar
  138. 138.
    Frean J, Arndt S, Spencer D. High rate of Bartonella henselae infection in HIV-positive outpatients in Johannesburg, South Africa. Trans R Soc Trop Med Hyg. 2002;96(5):549–50.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Justa RF, Carneiro AB, Rodrigues JL, Cavalcante A, Girao ES, Silva PS, et al. Bacillary angiomatosis in HIV-positive patient from Northeastern Brazil: a case report. Rev Soc Bras Med Trop. 2011;44(5):641–3.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Koehler JE, Tappero JW. Bacillary angiomatosis and bacillary peliosis in patients infected with human immunodeficiency virus. Clin Infect Dis: Off Publ Infect Dis Soc Am. 1993;17(4):612–24.CrossRefGoogle Scholar
  141. 141.
    Forrestel AK, Naujokas A, Martin JN, Maurer TA, McCalmont TH, Laker-Opwonya MO, et al. Bacillary angiomatosis masquerading as Kaposi’s sarcoma in East Africa. J Int Assoc Providers AIDS Care. 2015;14(1):21–5.CrossRefGoogle Scholar
  142. 142.
    Spach DH, Callis KP, Paauw DS, Houze YB, Schoenknecht FD, Welch DF, et al. Endocarditis caused by Rochalimaea quintana in a patient infected with human immunodeficiency virus. J Clin Microbiol. 1993;31(3):692–4.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Sander A, Penno S. Semiquantitative species-specific detection of Bartonella henselae and Bartonella quintana by PCR-enzyme immunoassay. J Clin Microbiol. 1999;37(10):3097–101.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Koehler JE, Sanchez MA, Tye S, Garrido-Rowland CS, Chen FM, Maurer T, et al. Prevalence of Bartonella infection among human immunodeficiency virus-infected patients with fever. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2003;37(4):559–66.CrossRefGoogle Scholar
  145. 145.
    Montales MT, Chaudhury A, Beebe A, Patil S, Patil N. HIV-associated TB syndemic: a growing clinical challenge worldwide. Front Public Health. 2015;3:281.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Otero L, Ugaz R, Dieltiens G, Gonzalez E, Verdonck K, Seas C, et al. Duration of cough, TB suspects’ characteristics and service factors determine the yield of smear microscopy. Trop Med Int Health: TM & IH. 2010;15(12):1475–80.CrossRefGoogle Scholar
  147. 147.
    Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL, et al. Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med. 2011;365(16):1492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Corti M, Palmero D. Mycobacterium avium complex infection in HIV/AIDS patients. Expert Rev Anti-Infect Ther. 2008;6(3):351–63.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Salama C, Policar M, Venkataraman M. Isolated pulmonary Mycobacterium avium complex infection in patients with human immunodeficiency virus infection: case reports and literature review. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2003;37(3):e35–40.CrossRefGoogle Scholar
  151. 151.
    Walle F, Kebede N, Tsegaye A, Kassa T. Seroprevalence and risk factors for Toxoplasmosis in HIV infected and non-infected individuals in Bahir Dar, Northwest Ethiopia. Parasit Vectors. 2013;6(1):15.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Le LT, Spudich SS. HIV-associated neurologic disorders and central nervous system opportunistic infections in HIV. Semin Neurol. 2016;36(4):373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Pankhurst CL. Candidiasis (oropharyngeal). BMJ Clin Evid. 2013;2013:1304.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Cassone A, Cauda R. Candida and candidiasis in HIV-infected patients: where commensalism, opportunistic behavior and frank pathogenicity lose their borders. AIDS (London, England). 2012;26(12):1457–72.CrossRefGoogle Scholar
  155. 155.
    Mukherjee PK, Chen H, Patton LL, Evans S, Lee A, Kumwenda J, et al. Topical gentian violet compared to nystatin oral suspension for the treatment of oropharyngeal candidiasis in HIV-1 Infected participants. AIDS. 2017 Jan 2;31(1):81-88.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Pienaar ED, Young T, Holmes H. Interventions for the prevention and management of oropharyngeal candidiasis associated with HIV infection in adults and children. Cochrane Database Syst Rev. 2010;11(11):Cd003940.Google Scholar
  157. 157.
    Cassone A. Vulvovaginal Candida albicans infections: pathogenesis, immunity and vaccine prospects. BJOG: Int J Obstet Gynaecol. 2015;122(6):785–94.CrossRefGoogle Scholar
  158. 158.
    Morris A, Beard CB, Huang L. Update on the epidemiology and transmission of Pneumocystis carinii. Microbes Infect/Inst Pasteur. 2002;4(1):95–103.CrossRefGoogle Scholar
  159. 159.
    Tasaka S. Pneumocystis pneumonia in human immunodeficiency virus-infected adults and adolescents: current concepts and future directions. Clin Med Insights Circ Respir Pulm Med. 2015;9(Suppl 1):19–28.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Kim HW, Heo JY, Lee YM, Kim SJ, Jeong HW. Unmasking granulomatous pneumocystis jirovecii pneumonia with nodular opacity in an HIV-infected patient after initiation of antiretroviral therapy. Yonsei Med J. 2016;57(4):1042–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Sax PE, Komarow L, Finkelman MA, Grant PM, Andersen J, Scully E, et al. Blood (1->3)-beta-D-glucan as a diagnostic test for HIV-related Pneumocystis jirovecii pneumonia. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2011;53(2):197–202.CrossRefGoogle Scholar
  162. 162.
    Kamada T, Furuta K, Tomioka H. Pneumocystis pneumonia associated with human immunodeficiency virus infection without elevated (1 --> 3)-beta-D glucan: a case report. Respir Med Case Rep. 2016;18:73–5.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Esteves F, Cale SS, Badura R, de Boer MG, Maltez F, Calderon EJ, et al. Diagnosis of Pneumocystis pneumonia: evaluation of four serologic biomarkers. Clin Microbiol Infect. 2015;21(4):379. e1–10.PubMedCrossRefGoogle Scholar
  164. 164.
    Adenis AA, Aznar C, Couppie P. Histoplasmosis in HIV-infected patients: a review of new developments and remaining gaps. Curr Trop Med Rep. 2014;1:119–28.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Loulergue P, Bastides F, Baudouin V, Chandenier J, Mariani-Kurkdjian P, Dupont B, et al. Literature review and case histories of Histoplasma capsulatum var. duboisii infections in HIV-infected patients. Emerg Infect Dis. 2007;13(11):1647–52.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    McKinsey DS, Spiegel RA, Hutwagner L, Stanford J, Driks MR, Brewer J, et al. Prospective study of histoplasmosis in patients infected with human immunodeficiency virus: incidence, risk factors, and pathophysiology. Clin Infect Dis: Off Publ Infect Dis Soc Am. 1997;24(6):1195–203.CrossRefGoogle Scholar
  167. 167.
    Wheat LJ. Laboratory diagnosis of histoplasmosis: update 2000. Semin Respir Infect. 2001;16(2):131–40.PubMedCrossRefGoogle Scholar
  168. 168.
    Wheat LJ. Improvements in diagnosis of histoplasmosis. Expert Opin Biol Ther. 2006;6(11):1207–21.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. Available at Accessed 10 Oct 2016.
  170. 170.
    Chen SC, Meyer W, Sorrell TC. Cryptococcus gattii infections. Clin Microbiol Rev. 2014;27(4):980–1024.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ogbuagu O, Villanueva M. Extensive central nervous system Cryptococcal disease presenting as immune reconstitution syndrome in a patient with advanced HIV: report of a case and review of management dilemmas and strategies. Infect Dis Rep. 2014;6(4):5576.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wright L, Bubb W, Davidson J, Santangelo R, Krockenberger M, Himmelreich U, et al. Metabolites released by Cryptococcus neoformans var. neoformans and var. gattii differentially affect human neutrophil function. Microbes Infect/Inst Pasteur. 2002;4(14):1427–38.CrossRefGoogle Scholar
  173. 173.
    Islam A, Li SS, Oykhman P, Timm-McCann M, Huston SM, Stack D, et al. An acidic microenvironment increases NK cell killing of Cryptococcus neoformans and Cryptococcus gattii by enhancing perforin degranulation. PLoS Pathog. 2013;9(7):e1003439.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77(1):120–7.PubMedCrossRefGoogle Scholar
  175. 175.
    Huston SM, Li SS, Stack D, Timm-McCann M, Jones GJ, Islam A, et al. Cryptococcus gattii is killed by dendritic cells, but evades adaptive immunity by failing to induce dendritic cell maturation. J Immunol (Baltimore, Md: 1950). 2013;191(1):249–61.CrossRefGoogle Scholar
  176. 176.
    Loyse A, Wainwright H, Jarvis JN, Bicanic T, Rebe K, Meintjes G, et al. Histopathology of the arachnoid granulations and brain in HIV-associated cryptococcal meningitis: correlation with cerebrospinal fluid pressure. AIDS (London, England). 2010;24(3):405–10.CrossRefGoogle Scholar
  177. 177.
    Bicanic T, Harrison TS. Cryptococcal meningitis. Br Med Bull. 2004;72(1):99–118.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368(14):1291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    van der Horst CM, Saag MS, Cloud GA, Hamill RJ, Graybill JR, Sobel JD, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med. 1997;337(1):15–21.CrossRefPubMedGoogle Scholar
  180. 180.
    Beardsley J, Wolbers M, Kibengo FM, Ggayi AB, Kamali A, Cuc NT, et al. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N Engl J Med. 2016;374(6):542–54.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Smith KD, Achan B, Hullsiek KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob Agents Chemother. 2015;59(12):7197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Rhein J, Morawski BM, Hullsiek KH, Nabeta HW, Kiggundu R, Tugume L, et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. Lancet Infect Dis. 2016;16(7):809–18.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Boulware DR, Meya DB, Muzoora C, Rolfes MA, Huppler Hullsiek K, Musubire A, et al. Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis. N Engl J Med. 2014;370(26):2487–98.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Jarvis JN, Bicanic T, Loyse A, Namarika D, Jackson A, Nussbaum JC, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2014;58(5):736–45.CrossRefGoogle Scholar
  185. 185.
    Kaplan JE, Vallabhaneni S, Smith RM, Chideya-Chihota S, Chehab J, Park B. Cryptococcal antigen screening and early antifungal treatment to prevent cryptococcal meningitis: a review of the literature. J Acquir Immune Defic Syndr. 2015;68(Suppl 3):S331–9.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Dutertre M, Cuzin L, Demonchy E, Pugliese P, Joly V, Valantin MA, et al. Initiation of antiretroviral therapy containing integrase inhibitors increases the risk of IRIS requiring hospitalization. J Acquir Immune Defic Syndr. 2017;76(1):e23–e6.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Manzardo C, Guardo AC, Letang E, Plana M, Gatell JM, Miro JM. Opportunistic infections and immune reconstitution inflammatory syndrome in HIV-1-infected adults in the combined antiretroviral therapy era: a comprehensive review. Expert Rev Anti-Infect Ther. 2015;13(6):751–67.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Meintjes G, Wilkinson RJ, Morroni C, Pepper DJ, Rebe K, Rangaka MX, et al. Randomized placebo-controlled trial of prednisone for paradoxical TB-associated immune reconstitution inflammatory syndrome. AIDS (London, England). 2010;24(15):2381–90.Google Scholar
  189. 189.
    Zolopa A, Andersen J, Powderly W, Sanchez A, Sanne I, Suckow C, et al. Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS One. 2009;4(5):e5575.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Brooks JT, Kaplan JE, Holmes KK, Benson C, Pau A, Masur H. HIV-associated opportunistic infections – going, going, but not gone: the continued need for prevention and treatment guidelines. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2009;48(5):609–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Infectious DiseasesYale University School of MedicineNew HavenUSA
  2. 2.Yale University School of Medicine, Cornell Scott-Hill Health CenterNew HavenUSA

Personalised recommendations