Advertisement

Innate Immunity in Inflammation

  • Andrea Cignarella
  • Chiara Bolego
Chapter

Abstract

A fine balance between prompt response to pathogens and avoidance of unregulated inflammation, as well as that between protection and self-damage drives the complexity of the immune system, at the same time pointing out the challenge for effective and safe immunopharmacological intervention. A wide variety of clinically relevant drugs are currently used in the treatment of human inflammatory and immune-system associated disorders. Classical therapeutic approaches are now integrated with emerging strategies that largely derive from advances in signalling and regulatory networks and the pathological consequences of their dysregulation in the field of innate immunity. This chapter provides an account of: (i) the interplay between innate immunity and inflammation; (ii) main immune signalling molecules in inflammation including cytokines, prostanoids and cancer-related immune response, and the main aspects of pharmacological control thereof; and (iii) emerging options for therapeutic interventions on cells of innate immunity.

Keywords

Innate immunity Inflammation Anti-cytokine agents Macrophage polarization Immunometabolism Histamine Immune and inflammatory pathologies 

References

  1. 1.
  2. 2.
    Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Cuervo ML, Holgate ST, Levi-Schaffer F (2015) The expanding role of immunopharmacology: IUPHAR review 16. Br J Pharmacol 172:4217–4227CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ishii M (2017) Immunology proves a great success for treating systemic autoimmune diseases – a perspective on immunopharmacology: IUPHAR review 23. Br J Pharmacol 174:1875–1880CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286CrossRefPubMedGoogle Scholar
  5. 5.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420CrossRefGoogle Scholar
  6. 6.
    Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979CrossRefPubMedGoogle Scholar
  7. 7.
    Vasselon T, Detmers PA (2002) Toll receptors: a central element in innate immune responses. Infect Immun 70:1033–1041CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328:228–231CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kortylewski M, Moreira D (2017) Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities. Cancer Immunol Immunother 66:979–988CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200CrossRefPubMedGoogle Scholar
  12. 12.
    Lamphier M, Zheng W, Latz E, Spyvee M, Hansen H, Rose J, Genest M, Yang H, Shaffer C, Zhao Y, Shen Y, Liu C, Liu D, Mempel TR, Rowbottom C, Chow J, Twine NC, Yu M, Gusovsky F, Ishizaka ST (2014) Novel small molecule inhibitors of TLR7 andTLR9: mechanism of action and efficacy in vivo. Mol Pharmacol 85:429–440CrossRefPubMedGoogle Scholar
  13. 13.
    Moilanen E (2014) Two faces of inflammation: an immunopharmacological view. Basic Clin Pharmacol Toxicol 114:2–6CrossRefPubMedGoogle Scholar
  14. 14.
    Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374CrossRefPubMedGoogle Scholar
  15. 15.
    Feldmann M (2002) Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2:364–371CrossRefPubMedGoogle Scholar
  16. 16.
    Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past, present and future. Cytokine Growth Factor Rev 25:453–472CrossRefPubMedGoogle Scholar
  17. 17.
    Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maini RN (2005) The 2005 international symposium on advances in targeted therapies: what have we learned in the 2000s and where are we going? Ann Rheum Dis 64(Suppl 4):106–108Google Scholar
  19. 19.
    Walsh G (2004) Second-generation biopharma-ceuticals. Eur J Pharm Biopharm 58:185–196CrossRefPubMedGoogle Scholar
  20. 20.
    Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA (2017) Regulation of innate and adaptive immunity by TGFβ. Adv Immunol 134:137–233CrossRefPubMedGoogle Scholar
  21. 21.
    Cignarella A (2011) Targeting interleukin-1ß hampers atherosclerosis progression – is there great promise? Atherosclerosis 217:64–66CrossRefPubMedGoogle Scholar
  22. 22.
    Ridker PM (2014) Targeting inflammatory pathways for the treatment of cardiovascular disease. Eur Heart J 35:540–543CrossRefPubMedGoogle Scholar
  23. 23.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131CrossRefPubMedGoogle Scholar
  24. 24.
    Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ, CANTOS Trial Group (2017) Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833–1842 Google Scholar
  25. 25.
    Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, Moslehi JJ (2015) Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. Circulation 132:2248–2258CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sung S, Yang H, Uryu K, Lee EB, Zhao L, Shineman D, Trojanowski JQ, Lee VM, Praticò D (2004) Modulation of nuclear factor-κB activity by indomethacin influences Aβ levels but not Aβ precursor protein metabolism in a model of Alzheimer’s disease. Am J Pathol 165:2197–2206CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20CrossRefPubMedGoogle Scholar
  28. 28.
    Patrono C, Baigent C (2017) Coxibs, traditional NSAIDs, and cardiovascular safety post-PRECISION: what we thought we knew then and what we think we know now. Clin Pharmacol Ther 102:238–245CrossRefPubMedGoogle Scholar
  29. 29.
    Di Gennaro A, Haeggström JZ (2012) The leukotrienes: immune-modulating lipid mediators of disease. Adv Immunol 116:51–92CrossRefPubMedGoogle Scholar
  30. 30.
    Matsuse H, Kohno S (2014) Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother 15:353–363CrossRefPubMedGoogle Scholar
  31. 31.
    Jutel M, Akdis M, Akdis CA (2009) Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy 39:1786–1800CrossRefPubMedGoogle Scholar
  32. 32.
    Tiligada E, Zampeli E, Sander K, Stark H (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 18:1519–1531CrossRefPubMedGoogle Scholar
  33. 33.
    Kollb-Sielecka M, Demolis P, Emmerich J, Markey G, Salmonson T, Haas M (2017) The European Medicines Agency review of pitolisant for treatment of narcolepsy: summary of the scientific assessment by the Committee for Medicinal Products for Human Use. Sleep Med 33:125–129CrossRefPubMedGoogle Scholar
  34. 34.
  35. 35.
    Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 14:561–584CrossRefPubMedGoogle Scholar
  36. 36.
    Pico de Coaña Y, Choudhury A, Kiessling R (2015) Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 21:482–491CrossRefPubMedGoogle Scholar
  37. 37.
    Hoos A (2016) Development of immuno-oncology drugs – from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 15:235–247CrossRefPubMedGoogle Scholar
  38. 38.
    Sheng J, Srivastava S, Sanghavi K, Zhen L, Schmidt BJ, Bello A, Gupta M (2017) Clinical pharmacology considerations for the development of immune checkpoint inhibitors. J Clin Pharmacol 57(S10):S26–S42CrossRefPubMedGoogle Scholar
  39. 39.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sundar R, Cho BC, Brahmer JR, Soo RA (2015) Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol 7:85–96CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang C, Thudium KB, Han M, Wang XT, Huang H, Feingersh D, Garcia C, Wu Y, Kuhne M, Srinivasan M, Singh S, Wong S, Garner N, Leblanc H, Bunch RT, Blanset D, Selby MJ, Korman AJ (2014) In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res 2:846–856CrossRefPubMedGoogle Scholar
  42. 42.
    Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, KEYNOTE-001 Investigators (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372:2018–2028CrossRefGoogle Scholar
  43. 43.
    Khoja L, Butler MO, Kang SP, Ebbinghaus S, Joshua AM (2015) Pembrolizumab. J Immunother Cancer 3:36CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, Chiu H, McBride J, Johnson C, Xin Y, Koeppen H, Leabman M, Iyer S (2016) Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs 8:593–603CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Inman BA, Longo TA, Ramalingam S, Harrison MR (2017) Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res 23:1886–1890CrossRefPubMedGoogle Scholar
  46. 46.
    Zheng Y, Yang Y, Wu S, Zhu Y, Tang X, Liu X (2016) Combining MPDL3280A with adoptive cell immunotherapy exerts better antitumor effects against cervical cancer. Bioengineered 8:367–373CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G, Zitvogel L (2016) Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 126:1224–1232CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Foks AC, Kuiper J (2017) Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 174:3940–3955CrossRefPubMedGoogle Scholar
  49. 49.
    Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, Vandenabeele P (2011) TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ 18:1316–1325CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Weber C, Shantsila E, Hristov M, Caligiuri G, Guzik T, Heine GH, Hoefer IE, Monaco C, Peter K, Rainger E, Siegbahn A, Steffens S, Wojta J, Lip GY (2016) Role and analysis of monocyte subsets in cardiovascular disease – joint consensus document of the European Society of Cardiology (ESC) Working Groups “Atherosclerosis & Vascular Biology” and “Thrombosis”. Thromb Haemost 116:626–637CrossRefPubMedGoogle Scholar
  53. 53.
    Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH (2011) SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:e50–e61CrossRefPubMedGoogle Scholar
  54. 54.
    Cappellari R, D’Anna M, Bonora BM, Rigato M, Cignarella A, Avogaro A, Fadini GP (2017) Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis 266:95–102CrossRefPubMedGoogle Scholar
  55. 55.
    Gratchev A, Sobenin I, Orekhov A, Kzhyshkowska J (2012) Monocytes as a diagnostic marker of cardiovascular diseases. Immunobiology 217:476–482CrossRefPubMedGoogle Scholar
  56. 56.
    Berg KE, Ljungcrantz I, Andersson L, Bryngelsson C, Hedblad B, Fredrikson GN, Nilsson J, Björkbacka H (2012) Elevated CD14++CD16 monocytes predict cardiovascular events. Circ Cardiovasc Genet 5:122–131CrossRefPubMedGoogle Scholar
  57. 57.
    Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, Nordhues U, Sorg C, Sunderkötter C, Roth J (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 109:1265–1274CrossRefPubMedGoogle Scholar
  58. 58.
    Vallelian F, Schaer CA, Kaempfer T, Gehrig P, Duerst E, Schoedon G, Schaer DJ (2010) Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 116:5347–5356CrossRefPubMedGoogle Scholar
  59. 59.
    Hotamisligil GS (2017) Inflammation, metaflammation and immunometabolic disorders. Nature 542:177–185CrossRefGoogle Scholar
  60. 60.
    O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Thwe PM, Pelgrom L, Cooper R, Beauchamp S, Reisz JA, D’Alessandro A, Everts B, Amiel E (2017) Cell-intrinsic glycogen metabolism supports early glycolytic reprogramming required for dendritic cell immune responses. Cell Metab 26:558–567.e5CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Leite F, Lima M, Marino F, Cosentino M, Ribeiro L (2016) Dopaminergic receptors and tyrosine hydroxylase expression in peripheral blood mononuclear cells: a distinct pattern in central obesity. PLoS One 11:e0147483CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703CrossRefPubMedGoogle Scholar
  65. 65.
    Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237CrossRefGoogle Scholar
  66. 66.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-κB. J Exp Med 205:1261–1268CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMedGoogle Scholar
  69. 69.
    Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, Cignarella A (2015) Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology 220:545–554CrossRefPubMedGoogle Scholar
  70. 70.
    Diao W, Lu L, Li S, Chen J, Zen K, Li L (2017) MicroRNA-125b-5p modulates the inflammatory state of macrophages via targeting B7-H4. Biochem Biophys Res Commun 491:912–918CrossRefPubMedGoogle Scholar
  71. 71.
    Jiang K, Weaver JD, Li Y, Chen X, Liang J, Stabler CL (2017) Local release of dexamethasone from macroporous scaffolds accelerates islet transplant engraftment by promotion of anti-inflammatory M2 macrophages. Biomaterials 114:71–81CrossRefPubMedGoogle Scholar
  72. 72.
    Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G (2013) Macrophage function and polarization in cardiovascular disease – a role of estrogen signaling? Arterioscler Thromb Vasc Biol 33:1127–1134CrossRefPubMedGoogle Scholar
  73. 73.
    Toniolo A, Fadini GP, Tedesco S, Cappellari R, Vegeto E, Maggi A, Avogaro A, Bolego C, Cignarella A (2015) Alternative activation of human macrophages is rescued by estrogen treatment in vitro and impaired by menopausal status. J Clin Endocrinol Metab 100:E50–E58CrossRefPubMedGoogle Scholar
  74. 74.
    Mercalli A, Calavita I, Dugnani E, Citro A, Cantarelli E, Nano R, Melzi R, Maffi P, Secchi A, Sordi V, Piemonti L (2013) Rapamycin unbalances the polarization of human macrophages to M1. Immunology 140:179–190CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kratz M, Coats BR, Hisert KB, Hagman D, Mutskov V, Peris E, Schoenfelt KQ, Kuzma JN, Larson I, Billing PS, Landerholm RW, Crouthamel M, Gozal D, Hwang S, Singh PK, Becker L (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Stienstra R, Duval C, Keshtkar S, van der Laak J, Kersten S, Müller M (2008) Peroxisome proliferator-activated receptor γ activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 283:22620–22627CrossRefPubMedGoogle Scholar
  77. 77.
    van der Meij E, Koning GG, Vriens PW, Peeters MF, Meijer CA, Kortekaas KE, Dalman RL (2013) A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation. PLoS One 8:e53882CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Pello OM, Silvestre C, De Pizzol M, Andrés V (2011) A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216:1172–1176CrossRefPubMedGoogle Scholar
  79. 79.
    Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:50–67CrossRefPubMedGoogle Scholar
  80. 80.
    Bernstein KE, Khan Z, Giani JF, Zhao T, Eriguchi M, Bernstein EA, Gonzalez-Villalobos RA, Shen XZ (2016) Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response. F1000Res 5. pii: F1000 Faculty Rev-393Google Scholar
  81. 81.
    Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA, Sanchez E, American Heart Association, American College of Cardiology, Centers for Disease Control and Prevention (2014) An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. Hypertension 63:878–885CrossRefPubMedGoogle Scholar
  82. 82.
    The Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 342:145–153CrossRefGoogle Scholar
  83. 83.
    Romero CA, Orias M, Weir MR (2015) Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 11:242–252CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineUniversity of PadovaPadovaItaly
  2. 2.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations