Advertisement

Innovative Drugs for Allergies

  • Ekaterini Tiligada
  • Kyriaki Gerasimidou
  • Francesca Levi-Schaffer
Chapter

Abstract

Allergic disorders are caused by immune responses to normally harmless environmental antigens. These allergens typically induce the production of type 2 T helper cell (TH2) cytokines, such as interleukin (IL)-4, IL-5 and IL-13 that promote class switch recombination to immunoglobulin E (IgE) in antigen-activated B cells and the functional activation of mast cells, basophils and eosinophils. The classical therapeutic interventions for the management of allergic diseases include corticosteroids, antihistamines targeting the histamine H1 receptor and other symptomatic medications, with variable clinical success. In recent years, a variety of pathobiological mechanisms implicated in the heterogeneous allergic phenotypes and endotypes have been exposed, driving the development of optimized small molecule drug candidates and novel targeted biologics. In the indented new era of personalized or precision medicine, numerous monoclonal antibody (mAb) products that are targeted at a specific determinant – usually a cytokine or a cytokine receptor – are at various stages of preclinical and clinical evaluation for their efficacy in managing allergic inflammation. Despite the plethora of emerging targeted options, only a few medications have been approved for human use to date. The anti-IgE mAb omalizumab is the first biologic that has been approved since 2003 for the treatment of patients with moderate to severe persistent asthma, and more recently for the management of chronic spontaneous urticaria. Subsequently, the anti-IL-5 humanised mAbs mepolizumab and reslizumab received market authorization as add-on maintenance therapies for patients with severe eosinophilic asthma that is not adequately controlled with inhaled corticosteroids. The latest addition to the armamentarium of approved medications for allergic disorders is dupilumab, a human mAb that inhibits IL-4 and IL-13 signaling by targeting the IL-4Rα subunit of the IL-4 receptor. Dupilumab received its first global approval in 2017 for the treatment of moderate to severe atopic dermatitis . Certainly, the complexity of asthma, atopic dermatitis and other related pathologies comprises heterogeneous, yet elusive, phenotypes and endotypes. In spite of the frequently disappointing outcomes of translational research, the emerging scientific evidence on the cellular and molecular mechanisms underlying the inflammatory responses, and the constantly expanding fields of immunopharmacology and bioengineering are promising indications for the expected successful development of better therapeutic approaches for allergic diseases in the future.

Keywords

Allergy Asthma Atopic dermatitis IgE Interleukins Monoclonal antibodies Urticaria 

References

  1. 1.
    Baiardini I, Braido F, Brandi S, Canonica GW (2006) Allergic diseases and their impact on quality of life. Ann Allergy Asthma Immunol 97:419–428CrossRefPubMedGoogle Scholar
  2. 2.
    Koti I, Weller K, Makris M, Tiligada E, Psaltopoulou T, Papageorgiou C, Baiardini I, Panagiotakos D, Braido F, Maurer M (2013) Disease activity only moderately correlates with quality of life impairment in patients with chronic spontaneous urticaria. Dermatology 226:371–379. https://doi.org/10.1159/000351711 CrossRefPubMedGoogle Scholar
  3. 3.
    Tejedor Alonso MA, Moro Moro M, Múgica García MV (2015) Epidemiology of anaphylaxis. Clin Exp Allergy 45:1027–1039. https://doi.org/10.1111/cea.12418 CrossRefPubMedGoogle Scholar
  4. 4.
    Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454:445–454. https://doi.org/10.1038/nature07204 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pawankar R (2014) Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J 7:12. https://doi.org/10.1186/1939-4551-7-12 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wawrzyniak P, Akdis CA, Finkelman FD, Rothenberg ME (2016) Advances and highlights in mechanisms of allergic disease in 2015. J Allergy Clin Immunol 137:1681–1696. https://doi.org/10.1016/j.jaci.2016.02.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Koulias C, Aggelides X, Chliva C, Makris M (2017) In vivo diagnostic procedures for IgE-mediated allergic disorders. In: Tiligada E, Ennis M (eds) Histamine receptors as drug targets, Methods in pharmacology and toxicology. Humana Press, New York, pp 433–472. https://doi.org/10.1007/978-1-4939-6843-5_15 CrossRefGoogle Scholar
  8. 8.
    Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G (2017) Bidirectional mast cell-eosinophil interactions in inflammatory disorders and cancer. Front Med (Lausanne) 4:103. https://doi.org/10.3389/fmed.2017.00103 CrossRefGoogle Scholar
  9. 9.
    Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18:693–704. https://doi.org/10.1038/nm.2755 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kawakami T, Blank U (2016) From IgE to omalizumab. J Immunol 197:4187–4192. https://doi.org/10.4049/jimmunol.1601476 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moon TC, Befus AD, Kulka M (2014) Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 5:569. https://doi.org/10.3389/fimmu.2014.00569 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peavy RD, Metcalfe DD (2008) Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol 8:310–315. https://doi.org/10.1097/ACI.0b013e3283036a90 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Castells M (2017) Diagnosis and management of anaphylaxis in precision medicine. J Allergy Clin Immunol 140:321–333. https://doi.org/10.1016/j.jaci.2017.06.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Cipriani F, Calamelli E, Ricci G (2017) Allergen avoidance in allergic asthma. Front Pediatr 5:103. https://doi.org/10.3389/fped.2017.00103 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cataldi M, Borriello F, Granata F, Annunziato L, Marone G (2014) Histamine receptors and antihistamines: from discovery to clinical applications. Chem Immunol Allergy 100:214–226. https://doi.org/10.1159/000358740 CrossRefPubMedGoogle Scholar
  16. 16.
    Landolina N, Levi-Schaffer F (2016) Monoclonal antibodies: the new magic bullets for allergy: IUPHAR Review 17. Br J Pharmacol 173:793–803. https://doi.org/10.1111/bph.13396 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Simons FE, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128:1139–50.e4CrossRefPubMedGoogle Scholar
  18. 18.
    Canonica GW, Senna G, Mitchell PD, O’Byrne PM, Passalacqua G, Varricchi G (2016) Therapeutic interventions in severe asthma. World Allergy Organ J 9:40. https://doi.org/10.1186/s40413-016-0130-3 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Church MK, Maurer M (2014) Antihistamines. Chem Immunol Allergy 100:302–310CrossRefPubMedGoogle Scholar
  20. 20.
    Trevor JL, Deshane JS (2014) Refractory asthma: mechanisms, targets, and therapy. Allergy 69:817–827. https://doi.org/10.1111/all.12412 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Boyman O, Kaegi C, Akdis M, Bavbek S, Bossios A, Chatzipetrou A, Eiwegger T, Firinu D, Harr T, Knol E, Matucci A, Palomares O, Schmidt-Weber C, Simon HU, Steiner UC, Vultaggio A, Akdis CA, Spertini F (2015) EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy 70:727–754. https://doi.org/10.1111/all.12616 CrossRefPubMedGoogle Scholar
  22. 22.
    Galli SJ (2016) Toward precision medicine and health: opportunities and challenges in allergic diseases. J Allergy Clin Immunol 137:1289–1300. https://doi.org/10.1016/j.jaci.2016.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tan HT, Sugita K, Akdis CA (2016) Novel biologicals for the treatment of allergic diseases and asthma. Curr Allergy Asthma Rep 16:70. https://doi.org/10.1007/s11882-016-0650-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Tiligada E (2012) Editorial: is histamine the missing link in chronic inflammation? J Leukoc Biol 92:4–6. https://doi.org/10.1189/jlb.0212093 CrossRefPubMedGoogle Scholar
  25. 25.
    Zampeli E, Thurmond RL, Tiligada E (2009) The histamine H4 receptor antagonist JNJ7777120 induces increases in the histamine content of the rat conjunctiva. Inflamm Res 58:285–291. https://doi.org/10.1007/s00011-009-8245-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Paller AS, Kabashima K, Bieber T (2017) Therapeutic pipeline for atopic dermatitis: end of the drought? J Allergy Clin Immunol 140:633–643. https://doi.org/10.1016/j.jaci.2017.07.006 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang YM, Wang J, Hon YY, Zhou L, Fang L, Ahn HY (2016) Evaluating and reporting the immunogenicity impacts for biological products – a clinical pharmacology perspective. AAPS J 18:395–403. https://doi.org/10.1208/s12248-015-9857-y CrossRefPubMedGoogle Scholar
  28. 28.
    Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67:601–655. https://doi.org/10.1124/pr.114.010249 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chliva C, Aggelides X, Makris M, Katoulis A, Rigopoulos D, Tiligada E (2015) Comparable profiles of serum histamine and IgG4 levels in allergic beekeepers. Allergy 70:457–460. https://doi.org/10.1111/all.12568 CrossRefPubMedGoogle Scholar
  30. 30.
    Makris M, Aggelides X, Chliva C, Katoulis A, Papamichael K, Tiligada E (2014) High baseline blood histamine levels and lack of cross-reactivity in a patient with ranitidine-induced anaphylaxis. J Investig Allergol Clin Immunol 24:361–363PubMedGoogle Scholar
  31. 31.
    O’Mahony L, Akdis M, Akdis CA (2011) Regulation of the immune response and inflammation by histamine and histamine receptors. J Allergy Clin Immunol 128:1153–1162. https://doi.org/10.1016/j.jaci.2011.06.051 CrossRefPubMedGoogle Scholar
  32. 32.
    Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147:S127–S135CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Leurs R, Vischer HF, Wijtmans M, de Esch IJ (2011) En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family. Trends Pharmacol Sci 32:250–257. https://doi.org/10.1016/j.tips.2011.02.004 CrossRefPubMedGoogle Scholar
  34. 34.
    Beck LA, Bernstein JA, Maurer M (2017) A review of international recommendations for the diagnosis and management of chronic urticaria. Acta Derm Venereol 97:149–158. https://doi.org/10.2340/00015555-2496 CrossRefPubMedGoogle Scholar
  35. 35.
    Yanai K, Yoshikawa T, Yanai A, Nakamura T, Iida T, Leurs R, Tashiro M (2017) The clinical pharmacology of non-sedating antihistamines. Pharmacol Ther 178:148–156. https://doi.org/10.1016/j.pharmthera.2017.04.004 CrossRefPubMedGoogle Scholar
  36. 36.
    Bosma R, Moritani R, Leurs R, Vischer HF (2016) BRET-based β-arrestin2 recruitment to the histamine H1 receptor for investigating antihistamine binding kinetics. Pharmacol Res 111:679–687. https://doi.org/10.1016/j.phrs.2016.07.034 CrossRefPubMedGoogle Scholar
  37. 37.
    Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ, Vischer HF (2015) Ligand residence time at G-protein-coupled receptors-why we should take our time to study it. Mol Pharmacol 88:552–560CrossRefPubMedGoogle Scholar
  38. 38.
    Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157:24–33. https://doi.org/10.1111/j.1476-5381.2009.00151.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosethorne EM, Charlton SJ (2011) Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 79:749–757. https://doi.org/10.1124/mol.110.068395 CrossRefPubMedGoogle Scholar
  40. 40.
    Kyriakidis K, Zampeli E, Palaiologou M, Tiniakos D, Tiligada E (2015) Histamine H3 and H4 receptor ligands modify vascular histamine levels in normal and arthritic large blood vessels in vivo. Inflammation 38:949–958. https://doi.org/10.1007/s10753-014-0057-1 CrossRefPubMedGoogle Scholar
  41. 41.
    Thurmond RL, Venable J, Savall B, La D, Snook S, Dunford PJ, Edwards JP (2017) Clinical development of histamine H4 receptor antagonists. Handb Exp Pharmacol 241:301–320. https://doi.org/10.1007/164_2016_130 CrossRefPubMedGoogle Scholar
  42. 42.
    Tiligada E, Zampeli E, Sander K, Stark H (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Investig Drugs 18:1519–1531. https://doi.org/10.1517/14728220903188438 CrossRefPubMedGoogle Scholar
  43. 43.
    Tiligada E, Ishii M, Riccardi C, Spedding M, Simon HU, Teixeira MM, Cuervo ML, Holgate ST, Levi-Schaffer F (2015) The expanding role of immunopharmacology: IUPHAR Review 16. Br J Pharmacol 172:4217–4227. https://doi.org/10.1111/bph.13219 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu JK (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3:113–116. https://doi.org/10.1016/j.amsu.2014.09.001 CrossRefGoogle Scholar
  45. 45.
    Chugh PK, Roy V (2014) Biosimilars: current scientific and regulatory considerations. Curr Clin Pharmacol 9:53–63CrossRefPubMedGoogle Scholar
  46. 46.
    Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14. https://doi.org/10.4161/19420862.2015.989042 CrossRefPubMedGoogle Scholar
  47. 47.
    Parren PWHI, Carter PJ, Plückthun A (2017) Changes to International Nonproprietary Names for antibody therapeutics 2017 and beyond: of mice, men and more. MAbs 9:898–906. https://doi.org/10.1080/19420862.2017.1341029 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338. https://doi.org/10.1038/nrd3003 CrossRefPubMedGoogle Scholar
  49. 49.
    Brennan FR, Cauvin A, Tibbitts J, Wolfreys A (2014) Optimized nonclinical safety assessment strategies supporting clinical development of therapeutic monoclonal antibodies targeting inflammatory diseases. Drug Dev Res 75:115–161. https://doi.org/10.1002/ddr.21173 CrossRefPubMedGoogle Scholar
  50. 50.
    Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, Lemanske Jr RF, Wardlaw AJ, Wenzel SE, Greenberger PA (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360CrossRefPubMedGoogle Scholar
  51. 51.
    Walsh GM (2017) Biologics for asthma and allergy. Curr Opin Otolaryngol Head Neck Surg 25:231–234. https://doi.org/10.1097/MOO.0000000000000352 CrossRefPubMedGoogle Scholar
  52. 52.
    Davies AM, Allan EG, Keeble AH, Delgado J, Cossins BP, Mitropoulou AN, Pang MOY, Ceska T, Beavil AJ, Craggs G, Westwood M, Henry AJ, McDonnell JM, Sutton BJ (2017) Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. J Biol Chem 292:9975–9987. https://doi.org/10.1074/jbc.M117.776476 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C (2005) The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 115:459–465CrossRefPubMedGoogle Scholar
  54. 54.
    Maurer M, Metz M, Brehler R, Hillen U, Jakob T, Mahler V, Pföhler C, Staubach P, Treudler R, Wedi B, Magerl M (2017) Omalizumab treatment in patients with chronic inducible urticaria: a systematic review of published evidence. J Allergy Clin Immunol pii: S0091-6749(17):31163–31166. https://doi.org/10.1016/j.jaci.2017.06.032 CrossRefGoogle Scholar
  55. 55.
    Metz M, Ohanyan T, Church MK, Maurer M (2014) Omalizumab is an effective and rapidly acting therapy in difficult-to-treat chronic urticaria: a retrospective clinical analysis. J Dermatol Sci 73:57–62. https://doi.org/10.1016/j.jdermsci.2013.08.011 CrossRefPubMedGoogle Scholar
  56. 56.
    Keating GM (2015) Mepolizumab: First Global Approval. Drugs 75:2163–2169. https://doi.org/10.1007/s40265-015-0513-8 CrossRefPubMedGoogle Scholar
  57. 57.
    Molfino NA, Gossage D, Kolbeck R, Parker JM, Geba GP (2012) Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin Exp Allergy 42:712–737. https://doi.org/10.1111/j.1365-2222.2011.03854.x CrossRefPubMedGoogle Scholar
  58. 58.
    Barranco P, Phillips-Angles E, Dominguez-Ortega J, Quirce S (2017) Dupilumab in the management of moderate-to-severe asthma: the data so far. Ther Clin Risk Manag 13:1139–1149. https://doi.org/10.2147/TCRM.S125964 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Blauvelt A, de Bruin-Weller M, Gooderham M, Cather JC, Weisman J, Pariser D, Simpson EL, Papp KA, Hong HC, Rubel D, Foley P, Prens E, Griffiths CEM, Etoh T, Pinto PH, Pujol RM, Szepietowski JC, Ettler K, Kemény L, Zhu X, Akinlade B, Hultsch T, Mastey V, Gadkari A, Eckert L, Amin N, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD, Shumel B (2017) Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 389:2287–2303. https://doi.org/10.1016/S0140-6736(17)31191-1 CrossRefPubMedGoogle Scholar
  60. 60.
    Bennich H, Ishizaka K, Johansson SGO, Rowe DS, Stanworth DR, Terry WD (1968) Immunoglobulin E, a new class of human immunoglobulin. Bull World Health Organ 38:151–152Google Scholar
  61. 61.
    Jensen RK, Plum M, Tjerrild L, Jakob T, Spillner E, Andersen GR (2015) Structure of the omalizumab Fab. Acta Crystallogr Sect F Struct Biol Commun 71:419–426. https://doi.org/10.1107/S2053230X15004100 CrossRefGoogle Scholar
  62. 62.
    Licari A, Marseglia G, Castagnoli R, Marseglia A, Ciprandi G (2015) The discovery and development of omalizumab for the treatment of asthma. Expert Opin Drug Discov 10:1033–1042. https://doi.org/10.1517/17460441.2015.1048220 CrossRefPubMedGoogle Scholar
  63. 63.
    McCormick SM, Heller NM (2015) Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 75:38–50. https://doi.org/10.1016/j.cyto.2015.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shirley M (2017) Dupilumab: First Global Approval. Drugs 77:1115–1121. https://doi.org/10.1007/s40265-017-0768-3 CrossRefPubMedGoogle Scholar
  65. 65.
    Sutton BJ, Davies AM (2015) Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol Rev 268:222–235. https://doi.org/10.1111/imr.12340 CrossRefPubMedGoogle Scholar
  66. 66.
    Navinés-Ferrer A, Serrano-Candelas E, Molina-Molina GJ, Martín M (2016) IgE-related chronic diseases and anti-IgE-based treatments. J Immunol Res 2016:8163803. https://doi.org/10.1155/2016/8163803. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Holm JG, Agner T, Sand C, Thomsen SF (2017) Omalizumab for atopic dermatitis: case series and a systematic review of the literature. Int J Dermatol 56:18–26. https://doi.org/10.1111/ijd.13353 CrossRefPubMedGoogle Scholar
  68. 68.
    Pavanello F, Zucca E, Ghielmini M (2017) Rituximab: 13 open questions after 20 years of clinical use. Cancer Treat Rev 53:38–46. https://doi.org/10.1016/j.ctrv.2016.11.015 CrossRefPubMedGoogle Scholar
  69. 69.
    Gauvreau GM, Arm JP, Boulet LP, Leigh R, Cockcroft DW, Davis BE, Mayers I, FitzGerald JM, Dahlen B, Killian KJ, Laviolette M, Carlsten C, Lazarinis N, Watson RM, Milot J, Swystun V, Bowen M, Hui L, Lantz AS, Meiser K, Maahs S, Lowe PJ, Skerjanec A, Drollmann A, O’Byrne PM (2016) Efficacy and safety of multiple doses of QGE031 (ligelizumab) versus omalizumab and placebo in inhibiting allergen-induced early asthmatic responses. J Allergy Clin Immunol 138:1051–1059. https://doi.org/10.1016/j.jaci.2016.02.027 CrossRefPubMedGoogle Scholar
  70. 70.
    Chang TW, Chen C, Lin CJ, Metz M, Church MK, Maurer M (2015) The potential pharmacologic mechanisms of omalizumab in patients with chronic spontaneous urticaria. J Allergy Clin Immunol 135:337–342. https://doi.org/10.1016/j.jaci.2014.04.036 CrossRefPubMedGoogle Scholar
  71. 71.
    Sheldon E, Schwickart M, Li J, Kim K, Crouch S, Parveen S, Kell C, Birrell C (2016) Pharmacokinetics, pharmacodynamics, and safety of MEDI4212, an anti-IgE monoclonal antibody, in subjects with atopy: a phase I study. Adv Ther 33:225–251. https://doi.org/10.1007/s12325-016-0287-8 CrossRefPubMedGoogle Scholar
  72. 72.
    Barnes PJ (2011) Pathophysiology of allergic inflammation. Immunol Rev 242:31–50. https://doi.org/10.1111/j.1600-065X.2011.01020.x CrossRefPubMedGoogle Scholar
  73. 73.
    Paul WE, Ohara J (1987) B-cell stimulatory factor-1/interleukin 4. Annu Rev Immunol 5:429–459CrossRefPubMedGoogle Scholar
  74. 74.
    Moriyama M, Nakamura S (2017) Th1/Th2 Immune balance and other T helper subsets in IgG4-related disease. Curr Top Microbiol Immunol 401:75–83. https://doi.org/10.1007/82_2016_40. CrossRefPubMedGoogle Scholar
  75. 75.
    Bachert C, Mannent L, Naclerio RM, Mullol J, Ferguson BJ, Gevaert P, Hellings P, Jiao L, Wang L, Evans RR, Pirozzi G, Graham NM, Swanson B, Hamilton JD, Radin A, Gandhi NA, Stahl N, Yancopoulos GD, Sutherland ER (2016) Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA 315:469–479. https://doi.org/10.1001/jama.2015.19330 CrossRefPubMedGoogle Scholar
  76. 76.
    Furuta GT, Atkins FD, Lee NA, Lee JJ (2014) Changing roles of eosinophils in health and disease. Ann Allergy Asthma Immunol 113:3–8. https://doi.org/10.1016/j.anai.2014.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Takatsu K (2011) Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci 87:463–485CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, Murphy K, Maspero JF, O’Brien C, Korn S (2015) Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med 3:355–366. https://doi.org/10.1016/S2213-2600(15)00042-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ekaterini Tiligada
    • 1
  • Kyriaki Gerasimidou
    • 1
  • Francesca Levi-Schaffer
    • 2
  1. 1.Department of Pharmacology, Medical SchoolNational and Kapodostrian University of AthensAthensGreece
  2. 2.Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations