Strategies and Compounds to Circumvent Glucocorticoid-Induced Side Effects

  • Astrid Luypaert
  • Wim Vanden Berghe
  • Jan Tavernier
  • Claude Libert
  • Karolien De BosscherEmail author


Glucocorticoids (GCs) are used in the clinic for the treatment of inflammatory diseases and particular cancers. Although they are highly efficient in combating inflammation, their use is limited. This is caused by quality-of-life-threatening side effects, e.g. osteoporosis and metabolic imbalances. Contemporary efforts still focus on the development and characterization of novel (non-)steroidal ligands that can separate the beneficial anti-inflammatory effects from the plethora of adverse effects. However, early-day views of how GCs mechanistically work appeared too simplistic to cover the complexity and pleiotropicity of glucocorticoid receptor (GR)-mediated therapeutic actions. In this chapter, we will zoom in on the rationale of selective GR agonist design and recent advances in the field. We will discuss in detail how exemplary novel GR-agonists are able or expected to circumvent specific GC-induced side effects. Today, although novel selective GR-drugs have demonstrated therapeutic benefit in pre-clinical and clinical trials, reaching the pharmacy market remains an insurmountable hurdle. This calls for stepping up knowledge-gathering efforts alongside a serious rethinking of strategies within the field.


Glucocorticoid receptor Selective GR agonists and modulators Dissociating ligands Glucocorticoid-induced side effects 


  1. 1.
    Laugesen K, Jørgensen J, Sørensen H, Petersen I (2017) Systemic glucocorticoid use in Denmark: a population-based prevalence study. BMJ Open 7(5):e015237PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Scheschowitsch K, Leite JA, Assreuy J, Assreuy J (2017) New insights in glucocorticoid receptor signaling – more than just a ligand-binding receptor. Front Endocrinol (Lausanne) 8(16):1–9Google Scholar
  3. 3.
    Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR (2017) Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol. Nature Publishing Group 18(3):159–174PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM (2015) Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds. Pharmacol Ther 152:28–41PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ramamoorthy S, Cidlowski JA (2016) Corticosteroids-mechanisms of action in health and disease. Rheum Dis Clin North Am 42(1):15–31PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cain DW, Cidlowski JA (2015) Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab 29:545–556PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    McDonough AK, Curtis JR, Saag KG (2008) The epidemiology of glucocorticoid-associated adverse events. Curr Opin Rheumatol 20(2):131–137PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Huscher D, Thiele K, Gromnica-Ihle E, Hein G, Demary W, Dreher R et al (2009) Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis 68(7):1119–1124PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Buttgereit F, Bijlsma J, Strehl C (2017) Will we ever have better glucocorticoids? Clin Immunol S1521-6616(17):30554–30555Google Scholar
  10. 10.
    Sundahl N, Clarisse D, Bracke M, Offner F, Vanden W, Beck IM (2016) Selective glucocorticoid receptor-activating adjuvant therapy in cancer treatments. Oncoscience 3(7–8):188–202PubMedPubMedCentralGoogle Scholar
  11. 11.
    Berger M, Rehwinkel H, Schmees N, Schäcke H, Edman K, Wissler L et al (2017) Discovery of new selective glucocorticoid receptor agonist leads. Bioorg Med Chem Lett 27(3):437–442PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Vandevyver S, Dejager L, Tuckermann J, Libert C (2013) New insights into the anti-inflammatory mechanisms of glucocorticoids: an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology 154(3):993–1007PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    De Bosscher K, Haegeman G, Elewaut D (2010) Targeting inflammation using selective glucocorticoid receptor modulators. Curr Opin Pharmacol 10(4):497–504PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schütz G, Angel P (1999) The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1–dependent genes in skin. J Cell Biol 147(7):1365–1370PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Schäcke H, Schottelius A, Döcke W, Strehlke P, Jaroch S, Schmees N (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads. PNAS 101(1):227–232PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Belvisi MG, Wicks SL, Battram CH, Bottoms SEW, Redford JE, Woodman P et al (2001) Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol 166:1975–1982PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    De Bosscher K, Beck I, Ratman D, Vanden Berghe W, Libert C (2016) Activation of the glucocorticoid receptor in acute inflammation: the SEDIGRAM concept. Trends Pharmacol Sci 37(1):4–16PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Joanny E, Ding Q, Gong L, Kong P, Saklatvala J, Clark AR (2011) Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1. Br J Pharmacol 165:1124–1136CrossRefGoogle Scholar
  19. 19.
    Vollmer TR, Stockhausen A, Zhang J (2012) Anti-inflammatory effects of mapracorat, a novel selective glucocorticoid receptor agonist, is partially mediated by MAP kinase phosphatase-1 (MKP-1). J Biol Chem 287(42):35212–35221PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    van Lierop C, Alkema W, Laskewitz AJ, Dijkema R, Van DHM, Smit MJ et al (2012) Org 214007-0: a novel non-steroidal selective glucocorticoid receptor modulator with full anti-inflammatory properties and improved therapeutic index. PLoS One 7(11):e48385PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chivers JE, Gong W, King EM, Seybold J, Mak JC, Donnelly LE et al (2006) Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids. Mol Pharmacol 70(6):2084–2095PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Murray MY, Rushworth SA, Zaitseva L, Bowles KM, Macewan DJ (2013) Attenuation of dexamethasone-induced cell death in multiple myeloma is mediated by miR-125b expression. Cell Cycle 12(13):2144–2153PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    De Iudicibus S, Lucafò M, Martelossi S, Pierobon C, Ventura A (2013) MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases. World J Gastroenterol 19(44):7947–7954PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Desmet SJ, Bougarne N, Van Moortel L, De Cauwer L, Thommis J (2017) Compound A influences gene regulation of the dexamethasone- activated glucocorticoid receptor by alternative cofactor recruitment. Sci Report 7:1–14CrossRefGoogle Scholar
  25. 25.
    Vayssière B, Dupont S, Choquart A, Petit F, Garcia T (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit antiinflammatory activity in vivo. Mol Endocrinol 11(9):1245–1255PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    De Bosscher K, Beck I, Haegeman G (2010) Classic glucocorticoids versus non-steroidal glucocorticoid receptor modulators: survival of the fittest regulator of the immune system? Brain Behav Immun 24(7):1035–1042PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Riccardi C (2015) GILZ as a mediator of the anti-inflammatory effects of glucocorticoids. Front Endocrinol (Lausanne) 6:1–6Google Scholar
  28. 28.
    Ricci E, Ronchetti S, Pericolini E, Gabrielli E, Cari L, Gentili M et al (2017) Role of the glucocorticoid-induced leucine zipper gene in dexamethasone-induced inhibition of mouse neutrophil migration via control of annexin A1 expression. FASEB J 31(7):3054–3065PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Clark AR, Belvisi MG (2012) Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 134(1):54–67PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hu X, Du S, Tunca C, Braden T, Long KR, Lee J et al (2011) The antagonists but not partial agonists of glucocorticoid receptor ligands show substantial side effect dissociation. Endocrinology 152(March):3123–3134PubMedCrossRefGoogle Scholar
  31. 31.
    Oh K-S, Patel H, Gottschalk RA, Lee WS, Baek S, Fraser IDC et al (2017) Anti-inflammatory chromatinscape suggests alternative mechanisms of glucocorticoid receptor action. Immunity 47(2):298–309.e5PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Lempiäinen JK, Niskanen EA, Vuoti K-M, Lampinen RE, Göös H, Varjosalo M et al (2017) Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol Cell Proteomics 16(8):1462–1474PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lim H-W, Uhlenhaut NH, Rauch A, Weiner J, Hübner S, Hübner N et al (2015) Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. Available from:
  34. 34.
    Sacta MA, Chinenov Y, Rogatsky I (2016) Glucocorticoid signaling: an update from a genomic perspective. Annu Rev Physiol 78:155–180PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jiang C-L, Liu L, Li Z, Buttgereit F (2015) The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids 102:27–31PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Morgan DJ, Poolman TM, Williamson AJK, Wang Z, Clark NR, Ma’ayan A et al (2016) Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production. Sci Rep 6:26419. Nature Publishing GroupGoogle Scholar
  37. 37.
    Birth P, Schöne S, Stelzl U, Meijsing SH (2017) Identification and characterization of BATF3 as a context-specific coactivator of the glucocorticoid receptor. Picard D, editor. PLoS One 12(7):e0181219PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Schacke H, Docke W, Asadullah K (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96(2002):23–43PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Costello R, Patel R, Humphreys J, Mcbeth J, Dixon WG (2017) Patient perceptions of glucocorticoid side effects: a cross-sectional survey of users in an online health community. BMJ Open 7:1–7CrossRefGoogle Scholar
  40. 40.
    Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG (2017) Prevention and management of glucocorticoid-induced side effects: a comprehensive review A. J Am Acad Dermatol 76(1):1–9PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Rauch A, Gossye V, Bracke D, Gevaert E, Jacques P, Van Beneden K et al (2011) An anti-inflammatory selective glucocorticoid receptor modulator preserves osteoblast differentiation. FASEB J 25(4):1323–1332PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    den Uyl D, ter Wee M, Boers M, Kerstens P, Voskuyl A, Nurmohamed M et al (2014) A non-inferiority trial of an attenuated combination strategy (“COBRA-light”) compared to the original COBRA strategy: clinical results after 26 weeks. Ann Rheum Dis 73:1071–1078Google Scholar
  43. 43.
    Goekoop-Ruiterman Y, de Vries-Bouwstra J, Allaart C, van Zeben D (2008) Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt Study). Arthritis Rheum 58(2):126–135Google Scholar
  44. 44.
    Bakker M, Jacobs J, Welsing P, Verstappen S (2012) Low-dose prednisone inclusion in a methotrexate-based, tight control strategy for early rheumatoid arthritis. Ann Intern Med 156:329–339PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Doggrell S (2003) Is AL-438 likely to have fewer side effects than the glucocorticoids? Expert Opin Investig Drugs 12(7):1227–1229PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Owen H, Miner J, Ahmed S, Farquharson C (2007) The growth plate sparing effects of the selective glucocorticoid receptor modulator, AL-438. Mol Cell Endocrinol 264(1–2):164–170PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Humphrey E, Williams J, Davie M, Marshall M (2006) Effects of dissociated glucocorticoids on OPG and RANKL in osteoblastic cells. Bone 38(5):652–661PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Coghlan MJ, Jacobson PB, Lane B, Nakane M, Lin CW, Elmore SW et al (2003) A novel antiinflammatory maintains glucocorticoid efficacy with reduced side effects. Mol Endocrinol 17(5):860–869PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Miner JN, Ardecky B, Benbatoul K, Griffiths K, Larson CJ, Mais DE et al (2007) Antiinflammatory glucocorticoid receptor ligand with reduced side effects exhibits an altered protein – protein interaction profile. PNAS 104(49):19244–19249PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    De Bosscher K, Vanden Berghe W, Beck IME, Van Molle W, Hennuyer N, Hapgood J et al (2005) A fully dissociated compound of plant origin for inflammatory gene repression. PNAS 102(44):15827–15832PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    De Bosscher K, Beck IM, Dejager L, Bougarne N, Gaigneaux A, Chateauvieux S et al (2014) Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cell Mol Life Sci 71(1):143–163PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Thiele S, Ziegler N, Tsourdi E, De Bosscher K, Tuckermann JP, Hofbauer LC et al (2012) Selective glucocorticoid receptor modulation maintains bone mineral density in mice. J Bone Miner Res 27(11):2242–2250PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rauner M, Goettsch C, Stein N, Thiele S, Bornhaeuser M, De Bosscher K et al (2011) Dissociation of osteogenic and immunological effects by the selective glucocorticoid receptor agonist, Compound A, in human bone marrow stromal cells. Endocrinology 152(1):103–112PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B et al (2010) Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 11(6):517–531PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Stock T, Fleishaker D, Mukherjee A, Le V, Xu J, Zeiher B (2009) Evaluation of safety, pharmacokinetics and pharmacodynamics of a selective glucocorticoid receptor modulator (SGRM) in healthy volunteers. Arthritis Rheum 60:420Google Scholar
  56. 56.
    Stock T, Fleishaker D, Wang X, Mukherjee A, Mebus C (2017) Improved disease activity with fosdagrocorat (PF-04171327), a partial agonist of the glucocorticoid receptor, in patients with rheumatoid arthritis: a phase 2 randomized study. Int J Rheum Dis 20(8):960–970PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Shoji S, Suzuki A, Conrado DJ, Peterson MC, Mccabe D, Rojo R et al (2017) Dissociated agonist of glucocorticoid receptor or prednisone for active rheumatoid arthritis: effects on P1NP and osteocalcin pharmacodynamics. CPT Pharmacometrics Syst Pharmacol 6(4):439–448Google Scholar
  58. 58.
    Carson MW, Luz JG, Suen C, Montrose C, Zink R, Ruan X et al (2014) Glucocorticoid receptor modulators informed by crystallography lead to a new rationale for receptor selectivity, function, and implications for structure-based design. J Med Chem 57:849–860PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Malaise O, Relic B, Quesada-calvo F, Charlier E, Zeddou M, Neuville S et al (2015) Selective glucocorticoid receptor modulator Compound A, in contrast to prednisolone, does not induce leptin or the leptin receptor in human osteoarthritis synovial fibroblasts. Rheumatology 54:1087–1092PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Malaise O, Relic B, Charlier E, Zeddou M, Neuville S, Deroyer C et al (2016) Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts. Arthritis Res Ther 18(1):219–234PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chen T, Benjamin DI, Kuo T, Lee RA, Li M, Mar DJ et al (2017) The glucocorticoid-Angptl4-ceramide axis induces insulin resistance through PP2A and PKCz. Sci Signal 7905:eaai7905CrossRefGoogle Scholar
  62. 62.
    Kong X, Yu J, Bi J, Qi H, Di W, Wu L et al (2015) Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 64:393–404PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Spencer S, Tilbrook A (2011) The glucocorticoid contribution to obesity. Stress 14(3):233–246PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Veyrat-durebex C, Deblon N, Caillon A, Andrew R, Altirriba J, Odermatt A et al (2012) Central glucocorticoid administration promotes weight gain and increased 11 b -hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One 7(3):e34002PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Stephens M, Ludgate M, Rees DA (2011) Brown fat and obesity: the next big thing? Clin Endocrinol 74:661–670CrossRefGoogle Scholar
  66. 66.
    Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva J (2000) Glucocorticoids inhibit the transcriptional response of the uncoupling protein-1 gene to adrenergic stimulation in a brown adipose cell line. Mol Cell Endocrinol 165(1–2):7–15PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Liu J, Kong X, Wang L, Qi H, Di W (2013) Essential roles of 11β-HSD1 in regulating brown adipocyte function. J Mol Endocrinol 50(1):103–113PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Poggioli R, Ueta CB, Arrojo R, Castillo M, Tatiana L, Bianco AC (2015) Dexamethasone reduces energy expenditure and increases susceptibility to diet-induced obesity in mice. Obesity (Silver Spring) 21(9):415–420Google Scholar
  69. 69.
    Strack AM, Bradbury MJ, Dallman MF (1995) Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am J Phys 268(1):183–191Google Scholar
  70. 70.
    Schäcke H, Zollner T, Döcke W, Rehwinkel H, Jaroch S, Skuballa W et al (2009) Characterization of ZK 245186, a novel, selective glucocorticoid receptor agonist for the topical treatment of inflammatory skin diseases. Br J Pharmacol 158:1088–1103PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wüst S, Tischner D, John M, Tuckermann JP, Menzfeld C, Hanisch U-K et al (2009) Therapeutic and adverse effects of a non-steroidal glucocorticoid receptor ligand in a mouse model of multiple sclerosis. PLoS One 4(12):e8202PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dewint P, Gossye V, De Bosscher K, Vanden Berghe W, Van Beneden K, Deforce D et al (2008) A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 180(4):2608–2615PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zhang Z, Zhang Z-Y, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183(5):3081–3091PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Saksida T, Vujicic M, Nikolic I, Stojanovic I, Haegeman G (2014) Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice. Br J Pharmacol 171(24):5898–5909PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kurimoto T, Tamai I, Miyai A, Kosugi Y, Nakagawa T (2017) JTP-117968, a novel selective glucocorticoid receptor modulator, exhibits improved transrepression/transactivation dissociation. Eur J Pharmacol 803:179–186PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bungard C, Hartman G, Manikowski J, Perkins J, Bai C (2011) Discovery of selective glucocorticoid receptor modulator MK-5932. Bioorg Med Chem 19(24):7374–7386PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Brandish P, Anderson K, Baltus G, Bungard C (2014) The preclinical efficacy, selectivity and pharmacologic profile of MK-5932, an insulin-sparing selective glucocorticoid receptor modulator. Eur J Pharmacol 724:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Tan H, Wang WEI, Yin X, Li YAO, Yin RUI (2014) Identification of a selective glucocorticoid receptor ligand for the treatment of chronic inflammation in type 2 diabetes mellitus. Exp Ther Med 8(5):1111–1114PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Ayroldi E, Macchiarulo A, Riccardi C (2014) Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoid- induced leucine zipper? A perspective. FASEB J 28(12):5055–5070PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zalachoras I, Houtman R, Atucha E, Devos R, Tijssen AMI, Hu P et al (2013) Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proc Natl Acad Sci U S A 110(19):7910–7915PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    van den Heuvel JK, Boon MR, Van Hengel I, van Der Put EP, Van Beek L, Van Harmelen V et al (2016) Identification of a selective glucocorticoid receptor modulator that prevents both diet-induced obesity and inflammation. Br J Pharmacol 173:1793–1804PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Beaudry JL, Dunford EC, Teich T, Zaharieva D, Hunt H, Belanoff JK et al (2014) Effects of selective and non-selective glucocorticoid receptor II antagonists on rapid-onset diabetes in young rats. PLoS One 9(3):e91248PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lopez FJ, Ardecky RJ, Bebo B, Benbatoul K, De Grandpre L, Liu S et al (2008) LGD-5552, an antiinflammatory glucocorticoid receptor ligand with reduced side effects, in vivo. Endocrinology 149(5):2080–2089PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sanchis A, Alba L, Latorre V, Sevilla LM, Pérez P (2012) Keratinocyte-targeted overexpression of the glucocorticoid receptor delays cutaneous wound healing. Brandner JM, editor. PLoS One 7(1):e29701PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    de Almeida TF, de Castro Pires T, Monte-Alto-Costa A (2016) Blockade of glucocorticoid receptors improves cutaneous wound healing in stressed mice. Exp Biol Med 241(4):353–358CrossRefGoogle Scholar
  86. 86.
    Hannen R, Udeh-Momoh C, Upton J, Wright M, Michael A, Gulati A et al (2017) Dysfunctional skin-derived glucocorticoid synthesis is a pathogenic mechanism of psoriasis. J Invest Dermatol 137(8):1630–1637PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Reuter KC, Loitsch SM, Dignass AU, Steinhilber D, Stein J (2012) Selective non-steroidal glucocorticoid receptor agonists attenuate inflammation but do not impair intestinal epithelial cell restitution in vitro. PLoS One 7(1):e29756PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bäumer W, Rossbach K, Schmidt BH (2016) The selective glucocorticoid receptor agonist mapracorat displays a favourable safety – efficacy ratio for the topical treatment of inflammatory skin diseases in dogs. Vet Dermatol 28:46–e11PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Madauss KP, Bledsoe RK, Mclay I, Stewart EL, Uings IJ, Weingarten G et al (2008) The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist. Bioorg Med Chem Lett 18(23):6097–6099PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Barnett HA, Coe DM, Cooper TWJ, Jack TI, Jones HT, Macdonald SJF et al (2009) Aryl aminopyrazole benzamides as oral non-steroidal selective glucocorticoid receptor agonists. Bioorg Med Chem Lett 19(1):158–162PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ryabtsova O, Joossens J, Van Der Veken P, Vanden Berghe W, Augustyns K, De Winter H (2016) Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition. Bioorg Med Chem Lett 26(20):5032–5038PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Klopot A, Baida G, Bhalla P, Haegeman G, Budunova I (2015) Selective activator of the glucocorticoid receptor Compound A dissociates therapeutic and atrophogenic effects of glucocorticoid receptor signaling in skin. J Cancer Prev 20(4):250–259PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Hasselgren P, Alamdari N, Aversa Z, Gonnella P, Smith IJ (2011) Corticosteroids and muscle wasting role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 13(4):423–428CrossRefGoogle Scholar
  94. 94.
    Zheng B, Ohkawa S, Li H, Roberts-Wilson T, Price S (2010) FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 24(8):2660–2669PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-cadavid N et al (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:363–371CrossRefGoogle Scholar
  96. 96.
    Galuppo P, Vettorazzi S, Hövelmann J, Scholz C-J, Tuckermann JP, Bauersachs J et al (2017) The glucocorticoid receptor in monocyte-derived macrophages is critical for cardiac infarct repair and remodeling. FASEB J.
  97. 97.
    Huynh T, Uaesoontrachoon K, Quinn J, Tatem KS (2013) Selective modulation through the glucocorticoid receptor ameliorates muscle pathology in mdx mice. J Pathol 231:223–235PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dibas A, Yorio T (2016) Glucocorticoid therapy and ocular hypertension. Eur J Pharmacol.; Elsevier 787:57–71PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Li A, Leung CT, Peterson-Yantorno K, Stamer WD, Civan MM (2011) Cytoskeletal dependence of adenosine triphosphate release by human trabecular meshwork cells. Invest Ophtalmol Vis Sci 52(11):7996–8005CrossRefGoogle Scholar
  100. 100.
    Tawara A, Tou N, Kubota T, Harada Y (2008) Immunohistochemical evaluation of the extracellular matrix in trabecular meshwork in steroid-induced glaucoma. Graefes Arch Clin Exp Ophthalmol 246(7):1021–1028PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Tektas O, Lütjen-Drecoll E (2009) Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res 88(4):769–775PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Johnson DH, Bradley JMD, Acorrf TS (2017) The effect of dexamethasone on glycosaminoglycans of human trobeculor meshwork in perfusion organ. Culture 31(12):12–15Google Scholar
  103. 103.
    Faralli JA, Gagen D, Filla MS, Crotti TN, Peters DM (2013) Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway. Biochim Biophys Acta 1833(12):3306–3313PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Raghunathan VK, Morgan JT, Park SA, Weber D, Phinney BS, Murphy CJ et al (2015) Dexamethasone stiffens trabecular meshwork, trabecular meshwork cells, and matrix. Invest Ophthalmol Vis Sci 56(8):4447–4459PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Clark A, Wilson K, McCartney M, Miggans S, Kunkle M, Howe W (1994) Glucocorticoid-induced formation of cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci 35(1):281–294PubMedPubMedCentralGoogle Scholar
  106. 106.
    Yuan Y, Call MK, Yuan Y, Zhang Y, Fischesser K, Liu C et al (2013) Dexamethasone induces cross-linked actin networks in trabecular meshwork cells through noncanonical wnt signaling. Invest Ophthalmol Vis Sci 54(10):6502–6509PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Qiu X, Wu K, Lin X, Liu Q (2015) Dexamethasone increases Cdc42 expression in human TM-1 cells. Curr Eye Res 40(3):290–299PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zhang X, Ognibene C, Clark A, Yorio T (2007) Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor β. Exp Eye Res 84(2):275–284PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kato M, Hagiwara Y, Oda T, Imamura-Takai M, Aono H, Nakamura M (2011) Beneficial pharmacological effects of selective glucocorticoid receptor agonist in external eye diseases. J Ocul Pharmacol Ther 27(4):353–360PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Shafiee A, Bucolo C, Budzynski E, Ward KW, López FJ (2011) In vivo ocular efficacy profile of mapracorat, a novel selective glucocorticoid receptor agonist, in rabbit models of ocular disease. Invest Ophthalmol Vis Sci 52(3):1422–1430PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Baiula M, Bedini A, Baldi J, Cavet ME, Govoni P, Spampinato S (2014) Mapracorat, a selective glucocorticoid receptor agonist, causes apoptosis of eosinophils infltrating the conjunctiva in late-phase experimental ocular allergy. Drug Des Devel Ther 8:745–757PubMedPubMedCentralGoogle Scholar
  112. 112.
    Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I (2015) Discovery of Compound A – a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 6(31):30730–30744PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lesovaya E, Yemelyanov A, Kirsanov K, Popa A (2013) Combination of a selective activator of the glucocorticoid receptor Compound A with a proteasome inhibitor as a novel strategy for chemotherapy of hematologic malignancies. Cell Cycle 12(1):133–144PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wallace AD, Cao Y, Chandramouleeswaran S, Cidlowski JA (2010) Lysine 419 targets human glucocorticoid receptor for proteasomal degradation. Steroids 75(12):1016–1023PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zheng Y, Ishiguro H, Ide H, Inoue S, Kashiwagi E (2015) Compound A inhibits bladder cancer growth predominantly via glucocorticoid receptor transrepression. Mol Endocrinol 29(10):1486–1497PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Chen Z, Lan X, Wu D, Sunkel B, Ye Z, Huang J et al (2015) Ligand-dependent genomic function of glucocorticoid receptor in triple-negative breast cancer. Nat Commun 6:8323PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R (2004) Glucocorticoid-induced apoptosis and glucocorticoid resistance: molecular mechanisms and clinical relevance. Cell Death Differ 11:45–55CrossRefGoogle Scholar
  118. 118.
    Rutz H (2002) Effects of corticosteroid use on treatment of solid tumours. Lancet 360(9349):1969–1970PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Zhang C, Wenger T, Mattern J, Ilea S, Frey C (2007) Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol Ther 6(2):278–287PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Pan D, Kocherginsky M, Conzen SD (2011) Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Res 71(20):6360–6370PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Kach J, Long T, Selman P, Tonsing-Carter E (2017) Selective glucocorticoid receptor modulators (SGRMs) delay castrate-resistant prostate cancer growth. Mol Cancer Ther 16(8):1680–1692PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Desmet SJ, De Bosscher K (2017) Glucocorticoid receptors: finding the middle ground. J Clin Invest 127(4):1136–1145PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hawgood S, Hook-Barnard IG, O’Brien TC, Yamamoto KR (2015) Precision medicine: beyond the infection point. Sci Transl Med 7(300):1–4CrossRefGoogle Scholar
  124. 124.
    Wigger-Alberti W, Williams R, von Mackensen Y, Hoffman-Wecker M, Grossmann U (2017) Comparison of occlusive and open application in a psoriasis plaque test design, exemplarily using investigations of mapracorat 0.1% ointment versus vehicle and reference drugs. Skin Pharmacol Physiol 30(2):102–114PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Hemmerling M, Nilsson S, Edman K et al (2017) Selective Nonsteroidal Glucocorticoid Receptor Modulators for the inhaled treatment of pulmonary diseases. J Med Chem 60(20):8591–8605PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Astrid Luypaert
    • 1
    • 2
  • Wim Vanden Berghe
    • 3
  • Jan Tavernier
    • 1
    • 2
  • Claude Libert
    • 4
  • Karolien De Bosscher
    • 1
    • 2
    Email author
  1. 1.Receptor Research Laboratories, Department of BiochemistryGhent UniversityGhentBelgium
  2. 2.VIB-UGent Center for Medical BiotechnologyGhentBelgium
  3. 3.PPES Lab Protein Science, Proteomics and Epigenetic Signaling, Department Biomedical SciencesUniversity of AntwerpWilrijkBelgium
  4. 4.Inflammation Research Center, VIB, Department of Biomedical Molecular Biology, Ghent UniversityGhentBelgium

Personalised recommendations