Advertisement

A Non-compensative Index for Country Risk in OECD Countries

  • Enrico IvaldiEmail author
  • Carolina Bruzzi
  • Riccardo Soliani
Chapter
Part of the Contributions to Management Science book series (MANAGEMENT SC.)

Abstract

In the last few years a fast growth of international lending and foreign investment has been happening. As a consequence of the large flow of capital going towards new developing countries, the risk exposure of the lenders and investors is rising, and country risk analysis becomes more and more important for the international financial operators. In the present paper we propose a non-compensatory index to reckon the country risk (since now, Country Risk) in OECD countries: the Mazziotta Pareto Index (MPI). It assumes the “non-substitutability” of the dimensions, all of them being considered of the same importance, without any compensation possible among them. The indicator classifies the Ocse with OECD into six main groups, according to their high or low country risk. Although based on a small number of variables, the MPI can to assess quite correctly the pre-figurative “latent dimensions” of the Country Risk in the short run. The proposed index sheds light particularly on the risk linked to political-economical events and decisions, and on the public finance. The Country Risk Index proposed allows to asses international country risk ratings comparatively, and to single out the relevance of economic, financial and political risk as components of a general risk rating.

Keywords

Country Risk Index MPI Non compensative index OECD countries Political risk 

References

  1. Abdi, H. (2003). Factor rotations in factor analyses. Encyclopedia for Research Methods for the Social Sciences (pp. 792–795). Thousand Oaks, CA: Sage.Google Scholar
  2. Aboura, S., & Chevallier, J. (2015). A cross-volatility index for hedging the country risk. Journal of International Financial Markets, Institutions and Money, 38, 25–41.CrossRefGoogle Scholar
  3. Agliardi, E., Agliardi, R., Pinar, M., Stengos, T., & Topaloglou, N. (2012). A new country risk index for emerging markets: A stochastic dominance approach. Journal of Empirical Finance, 19(5), 741–761.CrossRefGoogle Scholar
  4. Aizenman, J., Binici, M., & Hutchison, M. (2013). Credit ratings and the pricing of sovereign debt during the euro crisis. Oxford Review of Economic Policy, 29(3), 582–609.CrossRefGoogle Scholar
  5. Alsakka, R., & Ap Gwilym, O. (2013). Rating agencies’ signals during the European sovereign debt crisis: Market impact and spillovers. Journal of Economic Behavior and Organization, 85(1), 144–162.CrossRefGoogle Scholar
  6. Avramovic, D., Husain, S. S., de Weille, J., Froland, J., Hayes, J. P., & Wyss, H. (1964). Economic growth and external debt. Washington, DC: The World Bank.Google Scholar
  7. Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M. Teboulle (Eds.), Grouping multidimensional data: Recent advance in clustering (p. 25). New York: Springer.CrossRefGoogle Scholar
  8. Bouchet, M. H., Clark, E., & Groslambert, B. (2003). Country risk assessment: A guide to global investment strategy. Chichester, England: John Wiley & Sons Ltd.Google Scholar
  9. Brown Christopher L. Cavusgil Tamer, Lord A. Wayne (2015) Country-risk measurement and analysis: A new conceptualization and managerial tool. International Business Review 24, 2, 246-265Google Scholar
  10. Burlando, C., Ivaldi, E., & Musso, E. (2016). An indicator for measuring the perceived quality of local public transport: Relationship with use and satisfaction with the ticket price. International Journal of Transport Economics, 43(4), 451–473.Google Scholar
  11. Carment D. (2001); “Assessment country risk: Creating and index of severity”; Discussion Paper prepared for CIFP Risk Assessment Template. May 2001.Google Scholar
  12. Carstairs, V. (2000). Socio-economic factors at area level and their relationship with health. In P. Elliott, J. Wakefield, N. Best, & D. Briggs (Eds.), Spatial Epidemiology methods and applications (pp. 51–68). Oxford University Press.CrossRefGoogle Scholar
  13. Carstairs, V., & Morris, R. (1991). Deprivation and health in Scotland. Aberdeen University Press.Google Scholar
  14. Cattel, R. (1966). The scree test for the number of factors. Multivariate Behavioural Research, 1(2), 245–276.CrossRefGoogle Scholar
  15. Cavallo, E., Powell, A., & Rigobon, R. (2013). Do credit rating agencies add value? Evidence from the sovereign rating business. International Journal of Finance and Economics, 18(3), 240–265.CrossRefGoogle Scholar
  16. Cosset, J. C., & Roy, J. (1991). The determinants of country risk ratings. Journal of International Business Studies, 22(1), 135–142.CrossRefGoogle Scholar
  17. Cosset, J.-C., Siskos, Y., & Zopounidis, C. (1992). Evaluating country risk: A decision support approach. Global Finance Journal, 3(1), 79–95.CrossRefGoogle Scholar
  18. Cukier, K., & Mayer-Schoenberger, V. (2013). The rise of big data: How it’s changing the way we think about the world. Foreign Affairs, 92, 28–40.Google Scholar
  19. De Muro, P., Mazziotta, M., & Pareto, A. (2007). Composite indices for multidimensional development and poverty: An application to MDG indicators. In Wye City Group Meeting. Held in Rome, Italy: June. http://www.fao. org/es/ess/rural/wye_city_group.
  20. Dillon, W., & Goldstein, M. (1984). Multivariate analysis method and application. New York: Wiley.Google Scholar
  21. Doumpos, M., Pentaraki, K., Zopounidis, C., & Agorastos, C. (2001). Assessing country risk using a multi-group discrimination method: A comparative analysis. Managerial Finance, 27(8), 16–34.CrossRefGoogle Scholar
  22. Doumpos, M., & Zopounidis, C. (2002). On the use of a multi-criteria hierarchical discrimination approach for country risk assessment. Journal of Multi-Criteria Decision Analysis, 11(4-5), 279–289.CrossRefGoogle Scholar
  23. Erb, C. B., Harvey, C. R., & Viskanta, T. E. (1996). Political risk, economic risk, and financial risk. Financial Analysts Journal, 52(6), 29–46.CrossRefGoogle Scholar
  24. Eijffinger, S. C. (2012). Rating agencies: Role and influence of their sovereign credit risk assessment in the eurozone. Journal of Common Market Studies, 50(6), 912–921.CrossRefGoogle Scholar
  25. Fabrigar, L., Wegener, D., MacCallum, R., & Strahan, E. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299.CrossRefGoogle Scholar
  26. Forrest, R., & Gordon, D. (1993). People and places: A 1991 census atlas of England. SAUS: University of Bristol.Google Scholar
  27. Frank, C. R., Jr., & Cline, W. R. (1971). Measurement of debt servicing capacity: An application of discriminant analysis. Journal of International Economics, 1(3), 327–344.CrossRefGoogle Scholar
  28. Gapen, M., Gray, D., Lim, C. H., & Xiao, Y. (2008). Measuring and analyzing sovereign risk with contingent claims. IMF Staff Papers, 55(1), 109–148.CrossRefGoogle Scholar
  29. Gordon, D., & Pantazis, C. (1997). Breadline Britain in the 1990s. Ashgate Publishing Limited: Ashgate.Google Scholar
  30. Gorsuch, R. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  31. Hammer, P. L., Kogan, A., & Lejeune, M. A. (2006). Modeling country risk ratings using partial orders (2006). European Journal of Operational Research, 175(2), 836–859.CrossRefGoogle Scholar
  32. Hammer P. L., Kogan A., Lejeune M.A. (2004), Country risk ratings: Statistical and combinatorial non-recursive Models, Rutcor Research Report 8-2004.Google Scholar
  33. Hilscher, J., & Nosbusch, Y. (2010). Determinants of sovereign risk: Macroeconomic fundamentals and the pricing of sovereign debt. Review of Finance, 14(2), 235–262.CrossRefGoogle Scholar
  34. Hoti, S., & McAleer, M. (2004). An Empirical Assessment of Country Risk Ratings and Associated Models. Journal of Economic Survey, 18(4), 539–588.CrossRefGoogle Scholar
  35. Hoti, S. (2005). Modelling country spillover effects in country risk ratings. Emerging Markets Review, 6(4), 324–345.CrossRefGoogle Scholar
  36. Ivaldi, E. (2013). A proposal of a country risk index based on a factoral analysis: An application to South Mediterranean and Central-East European Countries. International Economics, 66(2), 231–249.Google Scholar
  37. Ivaldi, E., Bonatti, G., & Soliani, R. (2016a). The construction of a synthetic index comparing multidimensional well-being in the European Union. Social Indicators Research, 125(2), 397–430.  https://doi.org/10.1007/s11205-014-0855-8.CrossRefGoogle Scholar
  38. Ivaldi, E., Bonatti, G., & Soliani, R. (2016b). An indicator for the measurement of political participation: the case of Italy. Social Indicator Research. online.  https://doi.org/10.1007/s11205-016-1303-8.CrossRefGoogle Scholar
  39. Ivaldi, E., Bonatti, G., & Soliani, R. (2017). An indicator for the measurement of political participation: The case of Italy. Social Indicators Research, 132(2), 605–620.CrossRefGoogle Scholar
  40. Ivaldi E., Di Gennaro A. (2011) Il rischio paese e la sua misurazione: una proposta di indicatore, Collana Percorsi di Scienze Economiche e Sociali n.7 Impressioni Grafiche, Acqui Terme. ISBN 978-88-6195-105.Google Scholar
  41. Ivaldi, E., & Testi, A. (2010) Genoa Index of Deprivation (GDI): An index of material deprivation for geographical areas. In C. M. Baird, (Ed.), Social indicators: statistics, trends and policy development. New York: Nova Publisher. isbn:978-1-61122-841-0.Google Scholar
  42. Jarman, B. (1983). Identification of underprivileged areas. British Medical Journal, 286, 1705–1709.CrossRefGoogle Scholar
  43. Jarman, B. (1984). Underprivileged areas: validation and distribution of scores. British Medical Journal, 289, 1587–1592.CrossRefGoogle Scholar
  44. Johnson, R.A., Wichern, D.W. (2002). Applied multivariate statistical analysis. (5th Ed. pp. 767). Englewood Cliffs: Prentice-Hall. isbn:0131219731.Google Scholar
  45. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.CrossRefGoogle Scholar
  46. Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.CrossRefGoogle Scholar
  47. Kaminsky, G., & Schmukler, S. L. (2002). Emerging market instability: Do sovereign ratings affect country risk and stock returns? World Bank Economic Review, 16(2), 171–195.CrossRefGoogle Scholar
  48. Krzanowski A., Marriott F. (1995), Classification, covariance, structures and repeated measurements, part 2 Kendall’s Library of Statistics 2, Multivariate Analysis.Google Scholar
  49. Landi, S., Ivaldi, E., & Testi, A. (2017). Measuring change over time in socio-economic deprivation and health in an Urban Context: The case study of Genoa. Social Indicator Research.  https://doi.org/10.1007/s11205-017-1720-3.
  50. Levy J.B., Yoon E (1996). “Methods of Country Risk Assessment for International Market – Entry Decision”; University of Massachusetts Lowell ISBM Report 11 – 1996.Google Scholar
  51. Mazziotta, C., Mazziotta, M., Pareto, A., & Vidoli, F. (2010a). La sintesi di indicatori territoriali di dotazione infrastrutturale: metodi di costruzione e procedure di ponderazione a confronto. Rivista di economia e statistica del territorio, 1, 1–33.Google Scholar
  52. Mazziotta, M., Pareto, A., & Talucci, V. (2010b). La costruzione di indicatori di disuguaglianza sociale: il caso delle regioni italiane. XXXI Conferenza italiana di scienze regionali. http://www.grupposervizioambiente.it/aisre_sito/doc/papers/Mazziotta_Pareto_Talucci_AISRE.pdf
  53. Mazziotta, M., & Pareto, A. (2011). Un indice sintetico non compensativo per la misura della dotazione infrastrutturale: un’applicazione in ambito sanitario. Rivista di statisticaufficiale, 13(1), 63–79.Google Scholar
  54. Mazziotta, M., & Pareto, A. (2012). A non-compensatory approach for the measurement of the quality of life. In F. Maggino & G. Nuvolati (Eds.), Quality of life in Italy, Social Indicator Research Series (Vol. 48, pp. 27–40). Netherlands: Springer.CrossRefGoogle Scholar
  55. Meldrum D.H. (2000, July 34) Country risk and foreign direct investment, Business Economics. 30–7.Google Scholar
  56. Munda, G., &Nardo, M. (2005). Constructing consistent composite indicators: the issue of weights. EUR 21834 EN., EuropeanCommission.Google Scholar
  57. Myer, S., & Jencks, C. (1989). Poverty and the distribution of material hardship. Journal of Human Resources, 24, 88–114.CrossRefGoogle Scholar
  58. Nath H.K. (2008) Country risk analysis: A survey of the quantitative methods, Working Paper Series, Sam Houstan State University, Huntsville, TX, pp. 1–31Google Scholar
  59. Nardo, M., Saisana, M., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). Handbook on constricting composite indicators: methodology and user guide. N° 2005/3. Paris: OECD Publishing.Google Scholar
  60. Nordal, K. B. (2001). Country risk, country risk indices and valuation of FDI: A real options approach. Emerging Markets Review, 2(3), 197–217.CrossRefGoogle Scholar
  61. Pituch, K., & Stevens, J. (2016). Applied multivariate statistics for the social sciences. New York: Routledge.Google Scholar
  62. San-Martín-Albizuri, N., & Rodríguez-Castellanos, A. (2017). Measuring country risk: A topic of renewed interest. In R.-D. Leon (Ed.), Managerial strategies for business sustainability during turbulent timeseds. Hershey, PA: Business Science Reference.Google Scholar
  63. San-Martín-Albizuri, N., & Rodríguez-Castellanos, A. (2015). Country risk index and sovereign ratings: Do they foresee financial crises? Journal of Risk Model Validation, 9(1), 33–55.CrossRefGoogle Scholar
  64. San-Martín-Albizuri, N., & Rodríguez-Castellanos, A. (2012). Globalisation and the unpredictability of crisis episodes: An empirical analysis of country risk indexes. Investigaciones Europeas de Direccion y Economia de la Empresa, 18(2), 148–155.CrossRefGoogle Scholar
  65. San-Martín-Albizuri, N., Rodríguez-Castellanos, A. (2011) The unpredictability of the crisis: An empirical analysis of country risk indexes | [La imprevisibilidad de las crisis: Un análisis empírico sobre los índices de riesgo país] Innovar 21(39), pp. 161-178Google Scholar
  66. Soliani R., Di Gennaro A., Ivaldi E. (2011a) How deprivation affects life expectancy in France and Italy: Comparative evidence from a factorial analysis, in Socioeconomic Status and Health Implications eds. Reibert S. and Jannings A. Nova, New York isbn: 978-1-62100-675-6Google Scholar
  67. Soliani R., Di Gennaro A., Ivaldi E. (2011b) An Index of the quality of life for European Country: evidence of deprivation from EU-Silc data – Proceeding of the Vienna 2011 Conference on Schumpeter’s Heritage: the evolution of the Theory of Evolution, 27–30 October 2011 Google Scholar
  68. Stevens, J. (1986). Applied multivariate statistics for the social sciences. Hillsdale: Lawrence Erlbaum A.Google Scholar
  69. Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). NJ Lawrence Erlbaum Associates: Mahwah.Google Scholar
  70. Stiglitz, J. E. (2000). Capital market liberalization, economic growth, and instability. World Development, 28(6), 1075–1086.CrossRefGoogle Scholar
  71. Testi, A., & Ivaldi, E. (2009). Material versus social deprivation and health: A case study of an urban area. The European Journal of Health Economics, 10(3), 323–328.CrossRefGoogle Scholar
  72. Townsend, P. (1987). Deprivation. Journal of Social Policy, 2, 125–146.CrossRefGoogle Scholar
  73. Yim, J., & Mitchell, H. (2005). Comparison of country risk models: Hybrid neural networks, logit models, discriminant analysis and cluster techniques. Expert Systems with Applications, 28(1), 137–148.CrossRefGoogle Scholar
  74. Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Enrico Ivaldi
    • 1
    • 2
    Email author
  • Carolina Bruzzi
    • 1
  • Riccardo Soliani
    • 1
  1. 1.Department of Political ScienceUniversity of GenovaGenovaItaly
  2. 2.Centro de Investigaciones en EconometrìaUniversidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations