Advertisement

Nonlinear Dielectric Response of Plastic Crystals

  • P. Lunkenheimer
  • M. Michl
  • A. Loidl
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

This article summarizes ongoing experimental efforts on nonlinear dielectric spectroscopy on plastic crystals. In plastic crystals, the relevant dipolar orientational degrees of freedom are fixed on a crystalline lattice with perfect translational symmetry. However, while they can reorient freely in the high-temperature plastic phase, they often undergo glassy freezing at low temperatures. Hence, plastic crystals are often considered as model systems for structural glass formers. It is well known that plastic crystals reveal striking similarities with phenomena of conventional supercooled liquids. However, in most cases, they can be characterized as rather strong glass formers. Nonlinear dielectric spectroscopy is an ideal tool to study glass-transition phenomena, providing insight into cooperative phenomena or hidden phase transitions, undetectable by purely linear spectroscopy. In the present article, we discuss dielectric experiments using large electric ac fields probing the nonlinear 1ω and the third-order harmonic 3ω susceptibility. In the 1ω experiments, we find striking differences compared with observations on conventional structural glass formers: at low frequencies plastic crystals do not approach the trivial response, but reveal strong additional nonlinearity. These phenomena document the importance of entropic effects in this class of glassy materials. The harmonic third-order susceptibility reveals a hump-like shape, similar to observations in canonical glass formers, indicating the importance of cooperativity dominating the glass transition. In the frequency regime of the secondary relaxations, only minor nonlinear effects can be detected, supporting arguments in favor of the non-cooperative nature of these faster dynamics processes. Based on a model by Bouchaud and Biroli, from the hump observed in the 3ω susceptibility spectra, the temperature dependence of the number of correlated particles can be determined. We document that the results in plastic crystals perfectly well scale with the results derived from measurements on conventional glass formers, providing evidence that in plastic crystals the non-Arrhenius behavior of the relaxation times also arises from a temperature dependence of the energy barriers due to growing cooperative clusters.

Keywords

Plastic crystals Glassy crystals Supercooled liquids Nonlinear dielectric spectroscopy Harmonic susceptibility Relaxation dynamics Glass transition Non-Arrhenius behavior 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR 1394. Stimulating discussions with S. Albert, Th. Bauer, G. Biroli, U. Buchenau, G. Diezemann, G. P. Johari, F. Ladieu, K. L. Ngai, R. Richert, R. M. Pick, and K. Samwer are gratefully acknowledged.

References

  1. 1.
    R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386 (2002)CrossRefGoogle Scholar
  2. 2.
    J. Timmermans, J. Chim. Phys. 35, 331 (1938)CrossRefGoogle Scholar
  3. 3.
    N.G. Parsonage, L.A.K. Staveley, Disorder in Crystals (Oxford University Press, Oxford, 1978)Google Scholar
  4. 4.
    J.N. Sherwood, The Plastically Crystalline State (Wiley, New York, 1979)Google Scholar
  5. 5.
    K. Adachi, H. Suga, S. Seki, Bull. Chem. Soc. Jpn 41, 1073 (1968)CrossRefGoogle Scholar
  6. 6.
    U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 405 (1990)CrossRefGoogle Scholar
  7. 7.
    A. Loidl, R. Böhmer, in Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin, 1994), p. 659Google Scholar
  8. 8.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)CrossRefGoogle Scholar
  9. 9.
    H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)Google Scholar
  10. 10.
    M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)CrossRefGoogle Scholar
  12. 12.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)CrossRefGoogle Scholar
  13. 13.
    D.L. Leslie-Pelecky, N.O. Birge, Phys. Rev. Lett. 72, 1232 (1994)CrossRefPubMedGoogle Scholar
  14. 14.
    M.A. Ramos, S. Vieira, F.J. Bermejo, J. Dawidowski, H.E. Fischer, H. Schober, M.A. González, C.K. Loong, D.L. Price, Phys. Rev. Lett. 78, 82 (1997)CrossRefGoogle Scholar
  15. 15.
    R. Brand, P. Lunkenheimer, U. Schneider, A. Loidl, Phys. Rev. Lett. 82, 1951 (1999)CrossRefGoogle Scholar
  16. 16.
    F. Affouard, M. Descamps, Phys. Rev. Lett. 87, 035501 (2001)CrossRefPubMedGoogle Scholar
  17. 17.
    P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, Nature Mater. 3, 476 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Richert, J. Phys.: Condens. Matter 29, 363001 (2017)Google Scholar
  19. 19.
    P. Lunkenheimer, M. Michl, Th. Bauer, A. Loidl, Eur. Phys. J. Special Topics 226, 3157 (2017)CrossRefGoogle Scholar
  20. 20.
    R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    L.-M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    A. Drozd-Rzoska, S.J. Rzoska, J. Zioło, Phys. Rev. E 77, 041501 (2008)Google Scholar
  23. 23.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)Google Scholar
  24. 24.
    L.P. Singh, R. Richert, Phys. Rev. Lett. 109, 167802 (2012)CrossRefPubMedGoogle Scholar
  25. 25.
    Th. Bauer, P. Lunkenheimer, S. Kastner, A. Loidl, Phys. Rev. Lett. 110, 107603 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    Th. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)CrossRefPubMedGoogle Scholar
  27. 27.
    S. Albert, Th. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)CrossRefPubMedGoogle Scholar
  28. 28.
    M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 114, 067601 (2015)CrossRefPubMedGoogle Scholar
  29. 29.
    B. Riechers, K. Samwer, R. Richert, J. Chem. Phys. 142, 154504 (2015)CrossRefPubMedGoogle Scholar
  30. 30.
    S. Samanta, R. Richert, J. Chem. Phys. 142, 044504 (2015)CrossRefPubMedGoogle Scholar
  31. 31.
    M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 144, 114506 (2016)CrossRefPubMedGoogle Scholar
  32. 32.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996)CrossRefGoogle Scholar
  33. 33.
    S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007)CrossRefGoogle Scholar
  34. 34.
    G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)CrossRefGoogle Scholar
  35. 35.
    P. Lunkenheimer, A. Loidl, in Broadband Dielectric Spectroscopy, ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2002), Chap. 5Google Scholar
  36. 36.
    J.-P. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Tarzia, G. Biroli, A. Lefèvre, J.-P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)CrossRefPubMedGoogle Scholar
  38. 38.
    C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Phys. Rev. B 84, 104204 (2011)CrossRefGoogle Scholar
  39. 39.
    G.P. Johari, J. Chem. Phys. 138, 154503 (2013)CrossRefPubMedGoogle Scholar
  40. 40.
    G.P. Johari, J. Chem. Phys. 145, 164502 (2016)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Winterlich, G. Diezemann, H. Zimmermann, R. Böhmer, Phys. Rev. Lett. 91, 235504 (2003)CrossRefPubMedGoogle Scholar
  42. 42.
    G.P. Johari, J. Khouri, J. Chem. Phys. 137, 104502 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    T.R. Kirkpatrick, P.G. Wolynes, Phys. Rev. B 36, 8552 (1987)CrossRefGoogle Scholar
  44. 44.
    P.G. Debenedetti, F.H. Stillinger, Nature 310, 259 (2001)CrossRefGoogle Scholar
  45. 45.
    F. Mizuno, J.-P. Belieres, N. Kuwata, A. Pradel, M. Ribes, C. A. Angell, J. Non-Cryst. Solids 352, 5147 (2006)Google Scholar
  46. 46.
    C.A. Angell, in Relaxation in Complex Systems, ed. by K.L. Ngai, G.B. Wright (Office of Naval Research, Washington DC, 1985), p. 3Google Scholar
  47. 47.
    L.C. Pardo, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 124, 124911 (2006)CrossRefPubMedGoogle Scholar
  48. 48.
    Th. Bauer, M. Köhler, P. Lunkenheimer, A. Loidl, C.A. Angell, J. Chem. Phys. 133, 144509 (2010)CrossRefPubMedGoogle Scholar
  49. 49.
    M. Götz, Th. Bauer, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 140, 094504 (2014)CrossRefPubMedGoogle Scholar
  50. 50.
    P. Lunkenheimer, S. Kastner, M. Köhler, A. Loidl, Phys. Rev. E 81, 051504 (2010)CrossRefGoogle Scholar
  51. 51.
    P. Lunkenheimer, M. Köhler, S. Kastner, A. Loidl, in Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, ed. by P.G. Wolynes, V. Lubchenko (Wiley, Hoboken, 2012), Chap. 3, p. 115CrossRefGoogle Scholar
  52. 52.
    C.A. Angell, W. Sichina, Ann. N.Y. Acad. Sci. 279, 53 (1976)CrossRefGoogle Scholar
  53. 53.
    D.J. Plazek, K.L. Ngai, Macromolecules 24, 1222 (1991)CrossRefGoogle Scholar
  54. 54.
    R. Böhmer, C.A. Angell, Phys. Rev. B 45, 10091 (1992)CrossRefGoogle Scholar
  55. 55.
    A. Srinivasan, F. J. Bermejo, A. de Andrés, J. Dawidowski, J. Zúñiga, A. Criado, Phys. Rev. B 53, 8172 (1996)CrossRefGoogle Scholar
  56. 56.
    R. Brand, P. Lunkenheimer, U. Schneider, A. Loidl, Phys. Rev. B 62, 8878 (2000)CrossRefGoogle Scholar
  57. 57.
    C.A. Angell, J. Phys. Chem. Solids 49, 863 (1988)CrossRefGoogle Scholar
  58. 58.
    R. Böhmer, C.A. Angell, in Disorder Effects on Relaxational Processes, ed. by R. Richert, A. Blumen (Springer, Berlin, 1994), p. 11CrossRefGoogle Scholar
  59. 59.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)CrossRefGoogle Scholar
  60. 60.
    R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. B 56, R5713 (1997)CrossRefGoogle Scholar
  61. 61.
    M. Shablakh, L.A. Dissado, R.M. Hill, J. Chem. Soc. Faraday Trans. II 79, 369 (1983)CrossRefGoogle Scholar
  62. 62.
    O. Anderson, R.G. Ross, Mol. Phys. 71, 523 (1990)CrossRefGoogle Scholar
  63. 63.
    H. Forsmann, O. Anderson, J. Non-Cryst, Solids 131–133, 1145 (1991)Google Scholar
  64. 64.
    L.P. Singh, S.S.N. Murthy, Phys. Chem. Chem. Phys. 11, 5110 (2009)CrossRefPubMedGoogle Scholar
  65. 65.
    P. Lunkenheimer, A. Loidl, J. Chem. Phys. 104, 4324 (1996)CrossRefGoogle Scholar
  66. 66.
    O. Yamamuro, M. Hayashi, T. Matsuo, P. Lunkenheimer, J. Chem. Phys. 119, 4775 (2003)CrossRefGoogle Scholar
  67. 67.
    D.W. Davidson, R.H. Cole, J. Chem. Phys. 18, 1417 (1950)CrossRefGoogle Scholar
  68. 68.
    B. Schiener, R.V. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997)CrossRefGoogle Scholar
  69. 69.
    J. Herweg, Z. Phys. 3, 36 (1920)CrossRefGoogle Scholar
  70. 70.
    P. Debye, Polar Molecules (Dover Publications, New York, 1929)Google Scholar
  71. 71.
    J.L. Déjardin, YuP Kalmykov, Phys. Rev. E 61, 1211 (2000)CrossRefGoogle Scholar
  72. 72.
    Th. Bauer, M. Michl, P. Lunkenheimer, A. Loidl, J. Non-Cryst. Solids 407, 66 (2015)Google Scholar
  73. 73.
    P. Kim, A.R. Young-Gonzales, R. Richert, J. Chem. Phys. 145, 064510 (2016)CrossRefGoogle Scholar
  74. 74.
    S. Samanta, R. Richert, J. Phys. Chem. B 120, 7737 (2016)CrossRefPubMedGoogle Scholar
  75. 75.
    R. Richert, J. Chem. Phys. 146, 064501 (2017)CrossRefPubMedGoogle Scholar
  76. 76.
    P. Gadige, S. Albert, M. Michl, Th. Bauer, P. Lunkenheimer, A. Loidl, R. Tourbot, C. Wiertel-Gasquet, G. Biroli, J.-P. Bouchaud, F. Ladieu, Phys. Rev. E 96, 032611 (2017)CrossRefPubMedGoogle Scholar
  77. 77.
    F.H. Stillinger, Science 267, 1935 (1995)CrossRefPubMedGoogle Scholar
  78. 78.
    J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99, 135502 (2007)CrossRefPubMedGoogle Scholar
  79. 79.
    C. Gainaru, O. Lips, A. Troshagina, R. Kahlau, A. Brodin, F. Fujara, E.A. Rössler, J. Chem. Phys. 128, 174505 (2008)CrossRefPubMedGoogle Scholar
  80. 80.
    R.V. Chamberlin, Phys. Rev. Lett. 82, 2520 (1999)CrossRefGoogle Scholar
  81. 81.
    K.L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)Google Scholar
  82. 82.
    W. Götze, M. Sperl, Phys. Rev. Lett. 92, 105701 (2004)CrossRefPubMedGoogle Scholar
  83. 83.
    K.L. Ngai, M. Paluch, J. Chem. Phys. 120, 857 (2004)CrossRefPubMedGoogle Scholar
  84. 84.
    K.L. Ngai, Phys. Rev. E 57, 7346 (1998)CrossRefGoogle Scholar
  85. 85.
    R.L. Leheny, S.R. Nagel, Europhys. Lett. 39, 447 (1997)CrossRefGoogle Scholar
  86. 86.
    U. Schneider, R. Brand, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 84, 5560 (2000)CrossRefPubMedGoogle Scholar
  87. 87.
    K.L. Ngai, P. Lunkenheimer, C. León, U. Schneider, R. Brand, A. Loidl, J. Chem. Phys. 115, 1405 (2001)CrossRefGoogle Scholar
  88. 88.
    A. Döß, M. Paluch, H. Sillescu, G. Hinze, Phys. Rev. Lett. 88, 095701 (2002)Google Scholar
  89. 89.
    A. Kudlik, S. Benkhof, T. Blochowicz, C. Tschirwitz, E. Rössler, J. Mol. Struct. 479, 201 (1999)Google Scholar
  90. 90.
    M. Beiner, H. Huth, K. Schröter, J. Non-Cryst. Solids 279, 126 (2001)Google Scholar
  91. 91.
    S. Samanta, R. Richert, J. Phys. Chem. B 119, 8909 (2015)CrossRefPubMedGoogle Scholar
  92. 92.
    K.L. Ngai, J. Chem. Phys. 142, 114502 (2015)CrossRefPubMedGoogle Scholar
  93. 93.
    S. Samanta, R. Richert, J. Chem. Phys. 140, 054503 (2014)CrossRefPubMedGoogle Scholar
  94. 94.
    B. Roling, L.N. Patro, O. Burghaus, M. Gräf, Eur. Phys. J. Special Topics 226, 3095 (2017)Google Scholar
  95. 95.
    C. Brun, C. Crauste-Thibierge, F. Ladieu, D. L’Hôte, J. Chem. Phys. 134, 194507 (2011)Google Scholar
  96. 96.
    G. Diezemann, Phys. Rev. E 85, 051502 (2012)CrossRefGoogle Scholar
  97. 97.
    G. Diezemann, J. Chem. Phys. 138, 12A505 (2013)CrossRefPubMedGoogle Scholar
  98. 98.
    R.M. Pick, J. Chem. Phys. 140, 054508 (2014)CrossRefPubMedGoogle Scholar
  99. 99.
    U. Buchenau, J. Chem. Phys. 146, 214503 (2017)CrossRefPubMedGoogle Scholar
  100. 100.
    C. Gainaru, S. Kastner, F. Mayr, P. Lunkenheimer, S. Schildmann, H. J. Weber, W. Hiller, A. Loidl, R. Böhmer, Phys. Rev. Lett. 107, 118304 (2011)Google Scholar
  101. 101.
    C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E.A. Rössler, R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)CrossRefPubMedGoogle Scholar
  102. 102.
    R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993)CrossRefGoogle Scholar
  103. 103.
    S.A. Kivelson, G. Tarjus, Nature Mater. 7, 831 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Experimental Physics V, Center for Electronic Correlations and MagnetismUniversity of AugsburgAugsburgGermany

Personalised recommendations