Nonlinear Dielectric Spectroscopy pp 261-276 | Cite as
Dynamic Correlation Under Isochronal Conditions
Abstract
Results of various methods of evaluating the dynamic correlation volume in glassforming liquids and polymers are summarized. Most studies indicate that this correlation volume depends only on the α-relaxation time; that is, at state points associated with the same value of τ α , the extent of the correlation among local motions is equivalent. Nonlinear dielectric spectroscopy was used to measure the third-order susceptibility. Its amplitude, a measure of the dynamic correlation volume, is constant for isochronal state points, which supports the interpretation of the magnitude of the nonlinear susceptibility in terms of dynamic correlation. More broadly, it serves to establish that for non-associated materials, the cooperativity of molecular motions is connected to their timescale.
Notes
Acknowledgements
This work was supported by the Office of Naval Research.
References
- 1.B. Frick, C. Alba-Simionesco, K.H. Andersen, L. Willner, Influence of density and temperature on the microscopic structure and the segmental relaxation of polybutadiene. Phys. Rev. E 67, 051801 (2003)CrossRefGoogle Scholar
- 2.A. Cailliaux, C. Alba-Simionesco, B. Frick, L. Willner, I. Goncharenko, Phys. Rev. E 67, 010802 (2003)CrossRefGoogle Scholar
- 3.R. Bohmer, Nanoscale heterogeneity of glass-forming liquids: experimental advances. Cur. Opin. Sol. State Mat. Sci. 3, 378–385 (1998)CrossRefGoogle Scholar
- 4.H. Sillescu, Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 (1999)CrossRefGoogle Scholar
- 5.M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99–128 (2000)CrossRefGoogle Scholar
- 6.H. Sillescu, R. Bohmer, G. Diezemann, G. Hinze, Heterogeneity at the glass transition: what do we know? J. Non-Cryst. Sol. 307–310, 16–23 (2002)CrossRefGoogle Scholar
- 7.R. Richert, N. Israeloff, C. Alba‐Simionesco, F. Ladieu, D. L’Hote, Experimental approaches to heterogeneous dynamics in Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, ed. by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011)CrossRefGoogle Scholar
- 8.K. Kim, S. Saito, Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations. J. Chem. Phys. 138, 12A506 (2013)CrossRefPubMedGoogle Scholar
- 9.C.M. Roland, D. Fragiadakis, D. Coslovich, S. Capaccioli, K.L. Ngai, Correlation of nonexponentiality with dynamic heterogeneity from four-point dynamic susceptibility χ4(t) and its approximation χT(t). J. Chem. Phys. 133, 124507 (2010)CrossRefPubMedGoogle Scholar
- 10.R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)CrossRefGoogle Scholar
- 11.K. Niss, C. Dalle-Ferrier, G. Tarjus, C. Alba-Simionesco, On the correlation between fragility and stretching in glass-forming liquids. J. Phys. Cond. Mat. 19, 076102 (2007)CrossRefGoogle Scholar
- 12.E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
- 13.O. Dauchot, G. Marty, G. Biroli, Dynamical heterogeneity close to the jamming transition in a sheared granular material. Phys. Rev. Lett. 95, 265701 (2005)CrossRefPubMedGoogle Scholar
- 14.G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965)CrossRefGoogle Scholar
- 15.K.S. Schweizer, E.J. Saltzman, Activated hopping, barrier fluctuations, and heterogeneity in glassy suspensions and liquids. J. Phys. Chem. B 108, 19729–19741 (2004)CrossRefGoogle Scholar
- 16.J.P. Garrahan, D. Chandler, Dynamics on the way to forming glass: bubbles in space-time. Ann. Rev. Phys. Chem. 61, 191–217 (2010)CrossRefGoogle Scholar
- 17.V. Lubchenko, P.G. Wolynes, Theory of structural glasses and supercooled liquids. Ann. Rev. Phys. Chem. 58, 235–266 (2007)CrossRefGoogle Scholar
- 18.A. Heuer, Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys. Con. Mat. 20, 373101 (2008)CrossRefGoogle Scholar
- 19.F. Rittig, A. Huwe, G. Fleischer, J. Kärger, F. Kremer, Molecular dynamics of glass-forming liquids in confining geometries. Phys. Chem. Chem. Phys. 1, 519–523 (1999)CrossRefGoogle Scholar
- 20.G. Dosseh, C. Le Quellec, N. Brodie-Lindner, C. Alba-Simionesco, W. Haeussler, P. Levitz, Fluid–wall interactions effects on the dynamical properties of confined orthoterphenyl. J. Non-Cryst. Sol. 352, 4964–4968 (2006)CrossRefGoogle Scholar
- 21.J. Koppensteiner, W. Schranz, M.A. Carpenter, Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis. Phys. Rev. B 81, 024202 (2010)CrossRefGoogle Scholar
- 22.C.L. Jackson, G.B. McKenna, The glass transition of organic liquids confined to small pores. J. Non-Cryst. Sol. 131–133, 221–224 (1991)CrossRefGoogle Scholar
- 23.Y.B. Melnichenko, J. Schuller, R. Richert, B. Ewen, C.K. Loong, Dynamics of hydrogen bonded liquids confined to mesopores—a dielectric and neutron spectroscopy study. J. Chem. Phys. 103, 2016–2024 (1995)CrossRefGoogle Scholar
- 24.F. Kremer, A. Huwe, M. Arndt, P. Behrens, W. Schwieger, How many molecules form a liquid? J. Phys. Cond. Mat. 11, A175–A188 (1999)CrossRefGoogle Scholar
- 25.A. Schonhals, H. Goering, C. Schick, B. Frick, R. Zorn, Glassy dynamics of polymers confined to nanoporous glasses revealed by relaxational and scattering experiments. Eur. Phys. J. E 12, 173–178 (2003)CrossRefPubMedGoogle Scholar
- 26.A. Schonhals, H. Goering, C. Schick, B. Frick, M. Mayorova, R. Zorn, Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses. Eur. Phys. J. Spec. Topics. 141, 255–259 (2007)CrossRefGoogle Scholar
- 27.J.P. Bouchaud, G. Biroli, On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004)CrossRefPubMedGoogle Scholar
- 28.G. Biroli, J.-P. Bouchaud, A. Cavagna, T.S. Grigera, P. Verrocchio, Thermodynamic signature of growing amorphous order in glass-forming liquids. Nat. Phys. 4, 771–775 (2008)CrossRefGoogle Scholar
- 29.S. Yaida, L. Berthier, P. Charbonneau, G. Tarjus, Point-to-set lengths, local structure, and glassiness. Phys. Rev. E 94, 032605 (2016)CrossRefPubMedGoogle Scholar
- 30.W. Kob, S. Roldán-Vargas, L. Berthier, Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164 (2012)CrossRefGoogle Scholar
- 31.G.M. Hocky, L. Berthier, W. Kob, D.R. Reichman, Static point-to-set correlations in glass-forming liquids. Phys. Rev. E 85, 011102 (2012)CrossRefGoogle Scholar
- 32.K. Hima Nagamanasa, S. Gokhale, A.K. Sood, R. Ganapathy, Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11, 403 (2015)CrossRefGoogle Scholar
- 33.S, Gokhale, K. Hima Nagamanasa, R. Ganapathy, A. K. Sood, Growing dynamic facilitation on approaching the random pinning colloidal glass transition. Nat. Commun. 5, 4685 (2014)Google Scholar
- 34.B. Mei, Y. Lu, L. An, H. Li, L. Wang, Nonmonotonic dynamic correlations in quasi-tow-dimensional confined glass-forming liquids. Phys. Rev. E 95, 050601(R) (2017)CrossRefGoogle Scholar
- 35.A. Schonhals, E. Schlosser, Relationship between segmental and chain dynamics in polymer melts as studied by dielectric spectroscopy. Phys. Scr. T49, 233–236 (1993)CrossRefGoogle Scholar
- 36.C. Gainaru, W. Hiller, R. Bohmer, A dielectric study of oligo- and poly(propylene glycol). Macromolecules 43, 1907–1914 (2010)CrossRefGoogle Scholar
- 37.D. Fragiadakis, R. Casalini, R.B. Bogoslovov, C.G. Robertson, C.M. Roland, Dynamic heterogeneity and density scaling in 1,4-polyisoprene. Macromolecules 44, 1149–1155 (2011)CrossRefGoogle Scholar
- 38.U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998)CrossRefGoogle Scholar
- 39.S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled glycerol near Tg. J. Chem. Phys. 114, 7299–7302 (2001)CrossRefGoogle Scholar
- 40.S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, Comparative study of the NMR length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solid 307–310, 208–214 (2002)CrossRefGoogle Scholar
- 41.X.H. Qiu, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J. Phys. Chem. B 107, 459–464 (2003)CrossRefGoogle Scholar
- 42.E. Donth, The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Sol. 53, 325–330 (1982)CrossRefGoogle Scholar
- 43.K. Schroter, Characteristic length of glass transition heterogeneity from calorimetry. J Non-Cryst. Sol. 352, 3249–3254 (2006)CrossRefGoogle Scholar
- 44.A. Saiter, L. Delbreilh, H. Couderc, K. Arabeche, A. Schönhals, J.-M. Saiter, Temperature dependence of the characteristic length scale for glassy dynamics: Combination of dielectric and specific heat spectroscopy. Phys. Rev. E 81, 041805 (2010)CrossRefGoogle Scholar
- 45.E. Hempel, G. Hempel, A. Hensel, C. Schick, E. Donth, Characteristic length of dynamic glass transition near tg for a wide assortment of glass-forming substances. J. Phys. Chem. B 104, 2460–2466 (2000)CrossRefGoogle Scholar
- 46.C. Dasgupta, A.V. Indrani, S. Ramaswamy, M.K. Phani, Is there a growing correlation length near the glass transition? Europhys. Lett. 15, 307–312 (1991)CrossRefGoogle Scholar
- 47.L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011)CrossRefGoogle Scholar
- 48.L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005)CrossRefPubMedGoogle Scholar
- 49.C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.P. Bouchaud, F. Ladieu, D. L’Hote, G. Tarjus, Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence. Phys. Rev. E 76, 041510 (2007)CrossRefGoogle Scholar
- 50.L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hôte, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005)CrossRefPubMedGoogle Scholar
- 51.L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, D.R. Reichman, Spontaneous and induced dynamic fluctuations in glass formers. 1. General results and dependence on ensemble and dynamics. J. Chem. Phys. 126, 184503 (2007)CrossRefPubMedGoogle Scholar
- 52.S. Capaccioli, G. Ruocco, F. Zamponi, Dynamically correlated regions and configurational entropy in supercooled liquids. J. Phys. Chem. B 112, 10652–10658 (2008)CrossRefPubMedGoogle Scholar
- 53.E. Flenner, G. Szamel, Dynamic heterogeneities above and below the mode-coupling temperature: evidence of a dynamic crossover. J. Chem. Phys. 138, 12A523 (2013)CrossRefPubMedGoogle Scholar
- 54.K. Koperwas, A. Grzybowski, K. Grzybowska, Z. Wojnarowska, A.P. Sokolov, M. Paluch, Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming van der Waals liquids under high pressure. Phys. Rev. Lett. 111, 125701 (2013)CrossRefPubMedGoogle Scholar
- 55.R. Casalini, L. Zhu, E. Baer, C.M. Roland, Segmental dynamics and the correlation length in nanoconfined PMMA. Polymer 88, 133–136 (2016)CrossRefGoogle Scholar
- 56.T.S. Ingebrigtsen, J.R. Errington, T.M. Truskett, J.C. Dyre, Predicting how nanoconfinement changes the relaxation time of a supercooled liquid. Phys. Rev. Lett. 111, 235901 (2013)CrossRefPubMedGoogle Scholar
- 57.D. Fragiadakis, R. Casalini, C.M. Roland, Density scaling and dynamic correlations in viscous liquids. J. Phys. Chem. B 113, 13134–13147 (2009)CrossRefPubMedGoogle Scholar
- 58.C. Alba-Simionesco, C. Dalle-Ferrier, G. Tarjus, Effect of pressure on the number of dynamically correlated molecules when approaching the glass transition. AIP Conf. Proc. 1518, 527–535 (2013)CrossRefGoogle Scholar
- 59.R. Casalini, D. Fragiadakis, C.M. Roland, Dynamic correlation length scales under isochronal conditions. J. Chem. Phys. 142, 064504 (2015)CrossRefPubMedGoogle Scholar
- 60.J.-P. Bouchaud, G. Biroli, Nonlinear susceptibility in glassy systems: a probe for cooperative dynamical length scales. Phys. Rev. B 72, 064204 (2005)CrossRefGoogle Scholar
- 61.C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)CrossRefPubMedGoogle Scholar
- 62.Th Bauer, P. Lunkenheimer, A. Loidl, Cooperativity and the freezing of molecular motion at the glass transition. Phys. Rev. Lett. 111, 225702 (2013)CrossRefPubMedGoogle Scholar
- 63.M. Michl, Th Bauer, P. Lunkenheimer, A. Loidl, Nonlinear dielectric spectroscopy in a fragile plastic crystal. J. Chem. Phys. 144, 114506 (2016)CrossRefPubMedGoogle Scholar
- 64.S. Albert, Th Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352, 1308 (2016)CrossRefPubMedGoogle Scholar
- 65.G. Diezemann, Higher-order correlation functions and nonlinear response functions in a Gaussian trap model. J. Chem. Phys. 138, 12A505 (2013)CrossRefPubMedGoogle Scholar
- 66.C. Brun, C. Crauste-Thibierge, F. Ladieu, D. L’Hôte, Third harmonics nonlinear susceptibility in supercooled liquids: a comparison to the box model. J. Chem. Phys. 134, 194507 (2011)CrossRefPubMedGoogle Scholar
- 67.P. Kim, A.R. Young-Gonzales, R. Richert, Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J. Chem. Phys. 145, 064510 (2016)CrossRefGoogle Scholar
- 68.R. Richert, Nonlinear dielectric signatures of entropy changes in liquids subject to time dependent electric fields. J. Chem. Phys. 144, 114501 (2016)CrossRefPubMedGoogle Scholar
- 69.P. Gadige, S. Albert, M. Michl, Th Bauer, P. Lunkenheimer, A. Loidl, R. Tourbot, C. Wiertel-Gasquet, G. Biroli, J.-P. Bouchaud, F. Ladieu, Unifying different interpretations of the nonlinear response in glass-forming liquids. Phys. Rev. E 96, 032611 (2017)CrossRefPubMedGoogle Scholar
- 70.C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Nonlinear dielectric susceptibilities: accurate determination of the growing correlation volume in a supercooled liquid. Phys. Rev. B 84, 104204 (2011)CrossRefGoogle Scholar
- 71.Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, ed. by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos (Oxford University Press, Oxford, 2011)Google Scholar
- 72.C.M. Roland, R. Casalini, R. Bergman, J. Mattsson, Role of hydrogen bonds in the supercooled dynamics of glass-forming liquids at high pressures. Phys. Rev. B 77, 012201 (2008)CrossRefGoogle Scholar