Nonresonant Spectral Hole Burning in Liquids and Solids

  • Ralph V. ChamberlinEmail author
  • Roland Böhmer
  • Ranko Richert
Part of the Advances in Dielectrics book series (ADVDIELECT)


A review of nonresonant spectral hole burning (NHB) is given. NHB utilizes a large-amplitude, low-frequency pump oscillation in an externally applied field to modify the response of a sample nonlinearly, then a small probe step is applied to measure its modified response. When combined with other techniques, NHB indicates that the non-exponential relaxation in most substances comes from an ensemble of independently relaxing regions, with length scales on the order of nanometers. Various models are presented, focusing on a “box” model that gives excellent agreement with NHB measurements, often with no adjustable parameters. The box model is based on energy absorption that changes the local “fictive” temperature of slow degrees of freedom in spectrally selected regions, with a return to equilibrium only after this excess energy flows into the heat bath. A physical foundation for such thermodynamic heterogeneity is presented, based on concepts from nanothermodynamics. Guided by this approach, a Landau-like theory and Ising-spin model are described that yield several features found in glassforming liquids. Examples of results from NHB are shown, with special emphasis on dielectric hole burning (DHB) of liquids and magnetic hole burning (MHB) of solids.



Current work in the general area covered in this article is supported by the Deutsche Forschungsgemeinschaft under Grant No. BO1301/14-1. We thank Thomas Blochowicz for kindly sharing data and figures from Ref. [66].


  1. 1.
    H. Scher, M.F. Shlesinger, J.T. Bendler, Time-scale invariance in transport and relaxation. Phys. Today 44, 26 (1991)CrossRefGoogle Scholar
  2. 2.
    W. Weber, Ueber die Elasticität der Seidenfäden. Pogg. Ann. Phys. 24, 711 (1835)Google Scholar
  3. 3.
    F. Kohlrausch, Ueber die elastische Nachwirkung bei der Torsion. Pogg. Ann. Phys. 114, 337 (1863)CrossRefGoogle Scholar
  4. 4.
    F. Kohlrausch, Beiträge zur Kenntniß der elastischen Nachwirkung. Pogg. Ann. Phys. 128, 1 (1866)Google Scholar
  5. 5.
    G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970)CrossRefGoogle Scholar
  6. 6.
    R.V. Chamberlin, G. Mozurkewich, R. Orbach, Time decay of the remanent magnetization in spin-glasses. Phys. Rev. Lett. 52, 867 (1984)CrossRefGoogle Scholar
  7. 7.
    M. Cardona, R.V. Chamberlin, W. Marx, The history of the stretched exponential function. Ann. Phys. (Leipzig) 16, 842 (2007)CrossRefGoogle Scholar
  8. 8.
    R. Kohlrausch, Theorie des elektrischen Rückstandes in der Leidener Flasche. Pogg. Ann. Phys. 91, 56 (1854)CrossRefGoogle Scholar
  9. 9.
    U. Grigull, Newton’s temperature scale and the law of cooling. Wärme- und Stoffübertragung. 18, 195 (1984)CrossRefGoogle Scholar
  10. 10.
    G. Williams, M. Cook, P.J. Hains, Molecular motion in amorphous polymers consideration of the mechanism for α, β and (αβ) dielectric relaxations. J. Chem. Soc. Faraday Trans. II 2, 1045 (1972)CrossRefGoogle Scholar
  11. 11.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  12. 12.
    E. von Schweidler, Studien über die Anomalien im Verhalten der Dielektrika. Ann. Phys. 24, 711 (1907)CrossRefGoogle Scholar
  13. 13.
    K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  14. 14.
    K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941)CrossRefGoogle Scholar
  15. 15.
    D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J. Chem. Phys. 19, 1484 (1951)CrossRefGoogle Scholar
  16. 16.
    C.J.F. Böttcher, P. Bordewijk, Theory of Electric Polarization, vol. II (Elsevier, Amsterdam, 1978)Google Scholar
  17. 17.
    E. Donth, The size of cooperatively rearranging regions at the glass transition. J. Non-Cryst. Solids 53, 325 (1982)CrossRefGoogle Scholar
  18. 18.
    R.V. Chamberlin, D.N. Haines, Percolation model for relaxation in random systems. Phys. Rev. Lett. 65, 2197 (1990)PubMedCrossRefGoogle Scholar
  19. 19.
    V.I. Yukalov, Phase transitions and heterophase fluctuations. Phys. Rep. 208, 395 (1991)CrossRefGoogle Scholar
  20. 20.
    R.V. Chamberlin, R. Böhmer, E. Sanchez, C.A. Angell, Signature of ergodicity in the dynamic response of amorphous systems. Phys. Rev. B 46, 5787 (1992)CrossRefGoogle Scholar
  21. 21.
    R.V. Chamberlin, M.R. Scheinfein, Slow magnetic relaxation in iron: a ferromagnetic liquid. Science 260, 1098 (1993)PubMedCrossRefGoogle Scholar
  22. 22.
    C. Hansen, R. Richert, E.W. Fischer, Dielectric loss spectra of organic glass formers and Chamberlin cluster model. J. Non-Cryst. Solids 215, 293 (1997)CrossRefGoogle Scholar
  23. 23.
    R.V. Chamberlin, Mesoscopic mean-field theory for supercooled liquids and the glass transition. Phys. Rev. Lett. 82, 2520 (1999)CrossRefGoogle Scholar
  24. 24.
    G. Biroli, J.P. Bouchaud, K. Miyazaki, D.R. Reichman, Inhomogeneous mode-coupling theory and growing dynamic length in supercooled liquids. Phys. Rev. Lett. 97, 195701 (2006)CrossRefPubMedGoogle Scholar
  25. 25.
    A. Heuer, Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport. J. Phys.: Condens. Matter 20, 373101 (2008)Google Scholar
  26. 26.
    C.T. Rogers, R.A. Buhrman, Composition of 1/f noise in metal-insulator-metal tunnel junctions. Phys. Rev. Lett. 53, 1272 (1984)CrossRefGoogle Scholar
  27. 27.
    K. Schmidt-Rohr, H.W. Spiess, Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys. Rev. Lett. 66, 3020 (1991)CrossRefPubMedGoogle Scholar
  28. 28.
    R. Böhmer, E. Sanchez, C.A. Angell, AC technique for simultaneous study of local and global linear responses near the glass transition: the case of doped Ca2+/K+/NO3. J. Phys. Chem. 96, 9089 (1992)CrossRefGoogle Scholar
  29. 29.
    A. Barkatt, C.A. Angell, Use of structural probe ions for relaxation studies in glasses. 2. Temperature-jump and temperature-ramp studies of cobalt(II) in nitrate glasses. J. Phys. Chem. 82, 1972 (1978)CrossRefGoogle Scholar
  30. 30.
    R. Richert, Origin of dispersion in dipolar relaxations of glasses. Chem. Phys. Lett. 216, 223 (1993)CrossRefGoogle Scholar
  31. 31.
    M.T. Cicerone, M.D. Ediger, Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684 (1995)CrossRefGoogle Scholar
  32. 32.
    E. Vidal Russell, N.E. Israeloff, Direct observation of molecular cooperativity near the glass transition. Nature 408, 695 (2000)CrossRefGoogle Scholar
  33. 33.
    X. Qiu, T. Proffen, J.F. Mitchell, S.J.L. Billinge, Orbital correlations in the pseudocubic O and rhombohedral R phases of LaMnO3. Phys. Rev. Lett. 94:177203 (2005). Data from this study using neutron scattering to investigate correlations in LaMnO3 are presented in Ref. [35]. It is believed that abrupt loss of dynamical correlation across interatomic distances could be a general phenomenon in crystals, Billinge SJL, private communicationGoogle Scholar
  34. 34.
    Discussion regarding the use of the pair distribution function to study static and dynamic correlations in a variety of systems is given in C. A. Young, A. L. Goodwin, Applications of pair distribution function methods to contemporary problems in materials chemistry. J. Mater. Chem. 21, 6464 (2011)CrossRefGoogle Scholar
  35. 35.
    R.V. Chamberlin, Monte Carlo simulations including energy from an entropic force. Phys. A 391, 5384 (2012)CrossRefGoogle Scholar
  36. 36.
    R. Böhmer, Nanoscale heterogeneity in glass-forming liquids: experimental advances. Curr. Opin. Solid State Mater. Sci. 3, 378 (1998)CrossRefGoogle Scholar
  37. 37.
    R. Böhmer, R.V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S.C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H.W. Spiess, U. Tracht, M. Wilhelm, Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J. Non-Cryst. Solids 235–237, 1 (1998)CrossRefGoogle Scholar
  38. 38.
    H. Sillescu, Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81 (1999)CrossRefGoogle Scholar
  39. 39.
    M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    R. Richert, Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter 14, R703 (2002)Google Scholar
  41. 41.
    S.A. Reinsberg, A. Heuer, B. Doliwa, H. Zimmermann, H.W. Spiess, Comparative study of the NMR length scale of dynamic heterogeneities of three different glass-formers. J. Non-Cryst. Solids 307, 208 (2002)CrossRefGoogle Scholar
  42. 42.
    L. Hong, V.N. Novikov, A.P. Sokolov, Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids. Phys. Rev. E 83, 061508 (2011)CrossRefGoogle Scholar
  43. 43.
    L.J. Kaufman, Heterogeneity in single-molecule observables in the study of supercooled liquids. Annu. Rev. Phys. Chem. 64, 177 (2013)PubMedCrossRefGoogle Scholar
  44. 44.
    M. Meissner, K. Spitzmann, Experimental evidence on time-dependent specific heat in vitreous silica. Phys. Rev. Lett. 46, 265 (1981)CrossRefGoogle Scholar
  45. 45.
    P.K. Dixon, S.R. Nagel, Frequency-dependent specific heat and thermal conductivity at the glass transition in o-terphenyl mixtures. Phys. Rev. Lett. 61, 341 (1988)PubMedCrossRefGoogle Scholar
  46. 46.
    R. Böhmer, B. Schiener, J. Hemberger, R.V. Chamberlin, Pulsed dielectric spectroscopy of supercooled liquids. Z. Phys. B Condensed Matter. 99, 91 (1995); R. Böhmer, B. Schiener, J. Hemberger, R.V. Chamberlin, Erratum. Z Phys. B Condensed Matter. 99, 624 (1996)CrossRefGoogle Scholar
  47. 47.
    L. Boltzmann, Zur Theorie der elastischen Nachwirkung. Wiener Sitzungsber 70, 275 (1874). See, e.g., page 622 of the collection of papers available under
  48. 48.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987)Google Scholar
  49. 49.
    O. Kircher, R. Böhmer, G. Hinze, Pseudo-stochastic multiple-pulse excitation in dielectric spectroscopy: application to a relaxor ferroelectric. J. Phys.: Condens. Matter. 15, S1069 (2003)Google Scholar
  50. 50.
    R.V. Chamberlin, Heterogeneity in the primary response of amorphous and crystalline materials. Proposal to the National Science Foundation (1994)Google Scholar
  51. 51.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752 (1996)CrossRefGoogle Scholar
  52. 52.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679 (1948)CrossRefGoogle Scholar
  53. 53.
    S. Völker, Hole-burning spectroscopy. Annu. Rev. Phys. Chem. 40, 499 (1989)CrossRefGoogle Scholar
  54. 54.
    N.O. Birge, S.R. Nagel, Specific heat spectroscopy of the glass transition. Phys. Rev. Lett. 54, 2674 (1985)PubMedCrossRefGoogle Scholar
  55. 55.
    T. Christensen, The frequency-dependence of the specific-heat at the glass transition. J. Phys. (Paris) 46, C8–635 (1985)CrossRefGoogle Scholar
  56. 56.
    W. Knaak, M. Meissner, Time-dependent specific heat of vitreous silica between 0.1 and 1 K, in Phonon Scattering in Condensed Matter, ed. by W. Laßmann, S. Döttinger (Springer, Berlin, 1984), pp. 416–418CrossRefGoogle Scholar
  57. 57.
    B. Mertz, J.F. Berret, R. Böhmer, A. Loidl, M. Meissner, W. Knaak, Calorimetric investigations of (NaCN)1-x(KCN)x orientational glasses. Phys. Rev. B 42, 7596 (1990)CrossRefGoogle Scholar
  58. 58.
    N. Sampat, M. Meissner, Time-dependent specific heat of crystals and glasses at low temperatures, in Die Kunst of Phonons, ed. by T. Paszkiewicz, K. Rapcewicz (Springer, Boston, 1994), pp. 105–112CrossRefGoogle Scholar
  59. 59.
    see e.g. C.P. Slichter, Principles of Magnetic Resonance (Chap. 6), 3rd edn. (Springer, Berlin, 1990)Google Scholar
  60. 60.
    K. Duvvuri, R. Richert, Dielectric hole burning in the high frequency wing of supercooled glycerol. J. Chem. Phys. 118, 1356–1363 (2003)CrossRefGoogle Scholar
  61. 61.
    R.V. Chamberlin, Nonresonant spectral hole burning in a spin glass. Phys. Rev. Lett. 83, 5134 (1999)CrossRefGoogle Scholar
  62. 62.
    R.V. Chamberlin, B. Schiener, R. Böhmer, Slow dielectric relaxation of supercooled liquids investigated by nonresonant spectral hole burning. Mater. Res. Soc. Symp. Proc. 455, 117 (1997)CrossRefGoogle Scholar
  63. 63.
    R.V. Chamberlin, Experiments and theory of the nonexponential relaxation in liquids, glasses, polymers and crystals. Phase Transitions 65, 169 (1998)CrossRefGoogle Scholar
  64. 64.
    B. Schiener, R.V. Chamberlin, G. Diezemann, R. Böhmer, Nonresonant dielectric hole burning spectroscopy of supercooled liquids. J. Chem. Phys. 107, 7746 (1997)CrossRefGoogle Scholar
  65. 65.
    R. Richert, Spectral selectivity in the slow β-relaxation of a molecular glass. Europhys. Lett. 54, 767 (2001)CrossRefGoogle Scholar
  66. 66.
    T. Blochowicz, E.A. Rössler, Nonresonant dielectric hole burning in neat and binary organic glass formers. J. Chem. Phys. 122, 224511 (2005); see also T. Blochowicz, Broadband Dielectric Spectroscopy in Neat and Binary Molecular Glass Formers: frequency and Time Domain Spectroscopy, Non-Resonant Spectral Hole Burning. Dissertation, Universität Bayreuth (2003)Google Scholar
  67. 67.
    R. Richert, S. Weinstein, Nonlinear dielectric response and thermodynamic heterogeneity. Phys. Rev. Lett. 97, 095703 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    R. Böhmer, G. Diezemann, Principles and applications of pulsed dielectric spectroscopy and nonresonant dielectric hole burning, in Broadband dielectric spectroscopy, ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2002), pp. 523–569Google Scholar
  69. 69.
    R. Richert, R. Böhmer, Heterogeneous and homogeneous diffusivity in an ion-conducting glass. Phys. Rev. Lett. 83, 4337 (1999)CrossRefGoogle Scholar
  70. 70.
    R. Richert, The modulus of dielectric and conductive materials and its modification by high electric fields. J. Non-Cryst. Solids 305, 29 (2002)CrossRefGoogle Scholar
  71. 71.
    O. Kircher, B. Schiener, R. Böhmer, Long-lived dynamic heterogeneity in a relaxor ferroelectric. Phys. Rev. Lett. 81, 4520 (1998)CrossRefGoogle Scholar
  72. 72.
    W. Kleemann, V. Bobnar, J. Dec, P. Lehnen, R. Pankrath, S.A. Prosandeev, Relaxor properties of dilute and concentrated polar solid solutions. Ferroelectrics 261, 43 (2001)CrossRefGoogle Scholar
  73. 73.
    O. Kircher, G. Diezemann, R. Böhmer, Nonresonant dielectric hole-burning spectroscopy on a titanium modified lead magnesium niobate ceramic. Phys. Rev. B 64, 054103 (2001)CrossRefGoogle Scholar
  74. 74.
    T. El Goresy, O. Kircher, R. Böhmer, Nonresonant hole burning spectroscopy of the relaxor ferroelectric PLZT. Solid State Commun. 121, 485 (2002)CrossRefGoogle Scholar
  75. 75.
    X. Shi, G.B. McKenna, Mechanical hole burning spectroscopy: evidence for heterogeneous dynamics in polymer systems. Phys. Rev. Lett. 94, 157801 (2005)PubMedCrossRefGoogle Scholar
  76. 76.
    X.F. Shi, G.B. McKenna, Mechanical hole-burning spectroscopy: demonstration of hole burning in the terminal relaxation regime. Phys. Rev. B 73, 014203 (2006)CrossRefGoogle Scholar
  77. 77.
    Q. Qin, H. Doen, G.B. McKenna, Mechanical Spectral Hole Burning in polymer solutions. J. Polym. Sci. Part B: Polym. Phys. 47, 2047 (2009)CrossRefGoogle Scholar
  78. 78.
    N. Shamim, G.B. McKenna, Mechanical spectral hole burning in polymer solutions: comparison with large amplitude oscillatory shear fingerprinting. J. Rheol. 58, 43 (2014)CrossRefGoogle Scholar
  79. 79.
    M. Wilhelm, K. Hyun, Nonlinear oscillatory shear mechanical response, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)Google Scholar
  80. 80.
    S. Weinstein, R. Richert, Heterogeneous thermal excitation and relaxation in supercooled liquids. J. Chem. Phys. 123, 224506 (2005)PubMedCrossRefGoogle Scholar
  81. 81.
    R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Condens. Matter 29, 363001 (2017)Google Scholar
  82. 82.
    K.R. Jeffrey, R. Richert, K. Duvvuri, Dielectric hole burning: signature of dielectric and thermal relaxation time heterogeneity. J. Chem. Phys. 119, 6150 (2003)CrossRefGoogle Scholar
  83. 83.
    S. Capaccioli, D. Prevosto, A. Best, A. Hanewald, T. Pakula, Applications of the rheo-dielectric technique. J. Non-Cryst. Solids 353, 4267 (2007)CrossRefGoogle Scholar
  84. 84.
    T. Uneyama, Y. Masubuchi, K. Horio, Y. Matsumiya, H. Watanabe, J.A. Pathak, C.M. Roland, A theoretical analysis of rheodielectric response of type-A polymer chains. J. Polym. Sci. Part B: Polym. Phys. 47, 1039 (2009)CrossRefGoogle Scholar
  85. 85.
    K. Horio, T. Uneyama, Y. Matsumiya, Y. Masubuchi, H. Watanabe, Rheo-dielectric responses of entangled cis-polyisoprene under uniform steady shear and LAOS. Macromolecules 47, 246 (2014)CrossRefGoogle Scholar
  86. 86.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)Google Scholar
  87. 87.
    T. Matsuo, H. Suga, S. Seki, Dielectric loss measurement by differential thermal analysis (DTA). Bull. Chem. Soc. Jpn. 39, 1827 (1966)CrossRefGoogle Scholar
  88. 88.
    A. Heuer, Information content of multitime correlation functions for the interpretation of structural relaxation in glass-forming systems. Phys. Rev. E 56, 730 (1997)CrossRefGoogle Scholar
  89. 89.
    K. Schröter, E. Donth, Viscosity and shear response at the dynamic glass transition of glycerol. J. Chem. Phys. 113, 9101 (2000)CrossRefGoogle Scholar
  90. 90.
    L.-M. Wang, R. Richert, Measuring the configurational heat capacity of liquids. Phys. Rev. Lett. 99, 185701 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    L.-M. Wang, R. Richert, Reply to comment on “Measuring the configurational heat capacity of liquids”. Phys. Rev. Lett. 104, 239603 (2010)CrossRefGoogle Scholar
  92. 92.
    R. Richert, Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim. Acta 522, 28 (2011)CrossRefGoogle Scholar
  93. 93.
    I.M. Hodge, Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211 (1994)CrossRefGoogle Scholar
  94. 94.
    A. Khalife, U. Pathak, R. Richert, Heating liquid dielectrics by time dependent fields. Eur. Phys. J. B 83, 429 (2011)CrossRefGoogle Scholar
  95. 95.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)CrossRefPubMedGoogle Scholar
  96. 96.
    R. Richert, Dielectric hole burning in an electrical circuit analog of a dynamically heterogeneous system. Phys. A 322, 143 (2003)CrossRefGoogle Scholar
  97. 97.
    H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958)Google Scholar
  98. 98.
    H. Wagner, R. Richert, Dielectric relaxation of the electric field in poly(vinylacetate): a time domain study in the range 10−3 s to 106 s. Polymer 38, 255 (1997)CrossRefGoogle Scholar
  99. 99.
    J. Jäckle, R. Richert, Why retardation takes more time than relaxation in a linear system. Phys. Rev. E 77, 031201 (2008)CrossRefGoogle Scholar
  100. 100.
    A.R. Young-Gonzales, S. Samanta, R. Richert, Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J. Chem. Phys. 143, 104504 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    S. Weinstein, R. Richert, Nonlinear features in the dielectric behavior of propylene glycol. Phys. Rev. B 75, 064302 (2007)CrossRefGoogle Scholar
  102. 102.
    W. Huang, R. Richert, Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion. J. Chem. Phys. 130, 194509 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    S. Samanta, R. Richert, Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing. J. Chem. Phys. 140, 054503 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    W. Huang, R. Richert, Response to “Comment on ‘Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion’”. [J. Chem. Phys. 137:027101 (2012)] J. Chem. Phys. 137:027102Google Scholar
  105. 105.
    G. Diezemann, Response theory for nonresonant hole burning: stochastic dynamics. Europhys. Lett. 53, 604 (2001)CrossRefGoogle Scholar
  106. 106.
    R. Richert, Molecular dynamics analysed in terms of continuous measures of dynamic heterogeneity. J. Non-Cryst. Solids 235–237, 41 (1998)CrossRefGoogle Scholar
  107. 107.
    M. Winterlich, G. Diezemann, H. Zimmermann, R. Böhmer, Microscopic origin of the nonexponential dynamics in a glassy crystal. Phys. Rev. Lett. 91, 235504 (2003)PubMedCrossRefGoogle Scholar
  108. 108.
    M. Storek, J. Tilly, K.R. Jeffrey, R. Böhmer, Four-time 7Li stimulated-echo spectroscopy for the study of dynamic heterogeneities: application to lithium borate glass. J. Magn. Reson. 282, 1 (2017)PubMedCrossRefGoogle Scholar
  109. 109.
    A. Wagner, H. Kliem, A comment on dielectric hole burning. J. Chem. Phys. 111, 1043 (1999)CrossRefGoogle Scholar
  110. 110.
    G. Diezemann, Stochastic models of higher-order dielectric responses, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)Google Scholar
  111. 111.
    G. Diezemann, Dynamic heterogeneities in the out-of-equilibrium dynamics of simple spherical spin models. Phys. Rev. E 68, 021105 (2003)CrossRefGoogle Scholar
  112. 112.
    U. Häberle, G. Diezemann, Nonresonant holeburning in the Terahertz range: Brownian oscillator model. J. Chem. Phys. 120, 1466 (2004)PubMedCrossRefGoogle Scholar
  113. 113.
    U. Häberle, G. Diezemann, Kerr effect as a tool for the investigation of dynamic heterogeneities. J. Chem. Phys. 124, 044501 (2006)PubMedCrossRefGoogle Scholar
  114. 114.
    U. Häberle, G. Diezemann, Dynamic Kerr effect responses in the Terahertz-range. J. Chem. Phys. 122, 184517 (2005)PubMedCrossRefGoogle Scholar
  115. 115.
    G.E.P. Box, Robustness in the strategy of scientific model building, in Robustness in Statistics, ed. by R.L. Launer, G.N. Wilkerson (Academic Press, New York, 1979), pp. 201–236CrossRefGoogle Scholar
  116. 116.
    T.L. Hill, Thermodynamics of small systems. J. Chem. Phys. 36, 3182 (1962)CrossRefGoogle Scholar
  117. 117.
    T.L. Hill, Thermodynamics of Small Systems (parts I and II) (Dover, Mineola, NY, 1994)Google Scholar
  118. 118.
    T.L. Hill, A different approach to nanothermodynamics. Nano Lett. 1, 273 (2001)CrossRefGoogle Scholar
  119. 119.
    R.V. Chamberlin, Mean-field cluster model for the critical behaviour of ferromagnets. Nature 408, 337 (2000)PubMedCrossRefGoogle Scholar
  120. 120.
    R.V. Chamberlin, The big world of nanothermodynamics. Entropy 17, 52 (2015)CrossRefGoogle Scholar
  121. 121.
    G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)CrossRefGoogle Scholar
  122. 122.
    G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys.: Condens. Matter 17, R1143 (2005)Google Scholar
  123. 123.
    A. Wisitsorasak, P.G. Wolynes, Dynamical heterogeneity of the glassy state. J. Phys. Chem. 118, 7835 (2014)CrossRefGoogle Scholar
  124. 124.
    U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Length scale of dynamic heterogeneity at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727 (1998)CrossRefGoogle Scholar
  125. 125.
    K. Binder, Finite size scaling analysis of Ising model block distribution functions. Z. Phys. B 43, 119 (1981)CrossRefGoogle Scholar
  126. 126.
    R.V. Chamberlin, G.H. Wolf, Fluctuation-theory constraint for extensive entropy in Monte-Carlo simulations. Eur. Phys. J. B 67, 495 (2009)CrossRefGoogle Scholar
  127. 127.
    R.P. Feynman, Statistical Mechanics: A Set of Lectures (Westview Press, Boulder, CO, 1998), p. 1Google Scholar
  128. 128.
    A. Einstein, Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 33, 1275 (1910)CrossRefGoogle Scholar
  129. 129.
    L. Landau, The theory of phase transitions. Nature 138, 840 (1936)CrossRefGoogle Scholar
  130. 130.
    M.J. Klein, L. Tisza, Theory of critical fluctuations. Phys. Rev. 76, 1841 (1949)CrossRefGoogle Scholar
  131. 131.
    S.K. Ma, Modern theory of critical phenomena (W.A. Benjamin, Reading, MA, 1976)Google Scholar
  132. 132.
    R.V. Chamberlin, Critical behavior from Landau theory in nanothermodynamic equilibrium. Phys. Lett. A 315, 312 (2003)CrossRefGoogle Scholar
  133. 133.
    M.R.H. Javaheri, R.V. Chamberlin, A free-energy landscape picture and Landau theory for the dynamics of disordered materials. J. Chem. Phys. 125, 154503 (2006)PubMedCrossRefGoogle Scholar
  134. 134.
    R.V. Chamberlin, Reducing low-frequency noise during reversible fluctuations. Eur. Phys. J. Spec. Topics 226, 365 (2017)CrossRefGoogle Scholar
  135. 135.
    X.H. Qiu, M.D. Ediger, Length scale of dynamic heterogeneity in supercooled D-Sorbitol: comparison to model predictions. J. Phys. Chem. B 107, 459 (2003)CrossRefGoogle Scholar
  136. 136.
    C.A. Angell, D.L. Smith, Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg. J. Phys. Chem. 86, 3845 (1982)CrossRefGoogle Scholar
  137. 137.
    R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201 (1993)CrossRefGoogle Scholar
  138. 138.
    S. Samanta, R. Richert, Dynamics of glass-forming liquids. XVII. Does entropy control structural relaxation times. J. Chem. Phys. 142, 044504 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    F. Stickel, E.W. Fischer, R. Richert, Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity and viscosity data. J. Chem. Phys. 104, 2043 (1996)CrossRefGoogle Scholar
  140. 140.
    R.V. Chamberlin, J.V. Vermaas, G.H. Wolf, Beyond the Boltzmann factor for corrections to scaling in ferromagnetic materials and critical fluids. Eur. Phys. J. B 71, 1 (2009)CrossRefGoogle Scholar
  141. 141.
    R.V. Chamberlin, D.M. Nasir, 1/f noise from the laws of thermodynamics for finite-size fluctuations. Phys. Rev. E 90, 012142 (2014)CrossRefGoogle Scholar
  142. 142.
    R.V. Chamberlin, S. Abe, B.F. Davis, P.E. Greenwood, A.S.H. Shevchuk, Fluctuation theorems and 1/f noise from a simple matrix. Eur. Phys. J. B 89, 185 (2016)CrossRefGoogle Scholar
  143. 143.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Chap. 44-1) (Addison Wesley, Reading, MA, 1963)Google Scholar
  144. 144.
    R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Dynamics of supercooled liquids and glassy solids. Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)CrossRefGoogle Scholar
  145. 145.
    L. Wu, Relaxation mechanisms in a benzyl chloride–toluene glass. Phys. Rev. B 43, 9906 (1991)CrossRefGoogle Scholar
  146. 146.
    N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991)Google Scholar
  147. 147.
    B. Schiener et al (1995) unpublishedGoogle Scholar
  148. 148.
    R.A. Webb, New technique for improved low-temperature SQUID NMR measurements. Rev. Sci. Instr. 48, 1585 (1977)CrossRefGoogle Scholar
  149. 149.
    R.V. Chamberlin, L.A. Moberly, O.G. Symko, High-sensitivity magnetic-resonance by SQUID detection. J. Low Temp. Phys. 35, 337 (1979)CrossRefGoogle Scholar
  150. 150.
    B.T. Saam, M.S. Conradi, Low-frequency NMR polarimeter for hyperpolarized gases. J. Magn. Reson. 134, 67 (1998)PubMedCrossRefGoogle Scholar
  151. 151.
    S. Ghosh, R. Parthasarathy, T.F. Rosenbaum, G. Aeppli, Coherent spin oscillations in a disordered magnet. Science 296, 2195 (2002)PubMedCrossRefGoogle Scholar
  152. 152.
    A. Berton, J. Chaussy, J. Odin, J. Peyrard, J.J. Prejean, J. Souletie, Apparent specific heat of a spin glass (Au Fe 6 at %) in presence of a remanent magnetization and associated energy and magnetization relaxations. Solid State Commun. 37, 241 (1981)CrossRefGoogle Scholar
  153. 153.
    W.E. Fogle, J.D. Boyer, N.E. Phillips, J. Van Curen, Calorimetric investigation of spin-glass ordering in CuMn. Phys. Rev. Lett. 47, 352 (1981)CrossRefGoogle Scholar
  154. 154.
    R. Richert, Effects of strong static fields on the dielectric relaxation of supercooled liquids, in Nonlinear Dielectric Spectroscopy, ed. by R. Richert (Springer, this book, 2018)Google Scholar
  155. 155.
    However, homogeneous behavior was found from low-frequency NHB measurements on an ion conductor, see Ref. [69]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ralph V. Chamberlin
    • 1
    Email author
  • Roland Böhmer
    • 2
  • Ranko Richert
    • 3
  1. 1.Department of PhysicsArizona State UniversityTempeUSA
  2. 2.Fakultät Physik, Technische Universität DortmundDortmundGermany
  3. 3.School of Molecular SciencesArizona State UniversityTempeUSA

Personalised recommendations