Advertisement

Stochastic Models of Higher Order Dielectric Responses

  • Gregor Diezemann
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

The nonlinear response for systems exhibiting Markovian stochastic dynamics is calculated using time-dependent perturbation theory for the Green’s function, the conditional probability to find the system in a given configuration at a certain time given it was in another configuration at an earlier time. In general, the Green’s function obeys a so-called master-equation for the balance of the gain and loss of probability in the various configurations of the system. Using various models for the reorientational motion of molecules it is found that the scaled modulus of the third-order response, \(X_3\), shows a hump-like behavior for random rotational motion in some cases and it exhibits “trivial” behavior, a monotonuos decay from a finite zero-frequency value to a vanishing high-frequency limit, if the model of isotropic rotational diffusion is considered. For the time-honored model of dipole reorientations in an asymmetric double-well potential, it is found that \(X_3\) exhibits a peak in a certain temperature range around a characteristic temperature at which the zero-frequency limit vanishes. The fifth-order modulus \(X_5\) shows hump-like behavior in two distinct temperature regimes located at temperatures, where \(X_3\) behaves trivially. For a trap model with a Gaussian density of states, a model that exhibits some features of glassy relaxation, both nonlinear response functions can exhibit either trivial or hump-like behavior depending on the specific choice for some model parameters. The height of the peak shows various temperature dependencies from increasing with temperature, decreasing or a temperature-independent behavior.

Keywords

Nonlinear dielectric relaxation Stochastic models Molecular reorientations Asymmetric double-well potential model Trap model 

Notes

Acknowledgements

Useful discussions with Roland Böhmer, Gerald Hinze, Francois Ladieu, and Jeppe Dyre are gratefully acknowledged.

References

  1. 1.
    F. Kremer, A.E. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  2. 2.
    P. Lunkenheimer, U. Schneider, R. Brand, A. Loidl, Contemp. Phys. 41, 15 (2000)CrossRefGoogle Scholar
  3. 3.
    R. Richert, Adv. Chem. Phys. 156, 101 (2014)Google Scholar
  4. 4.
    R. Böhmer, R. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. Kübler, R. Richert, B. Schiener, H. Sillescu, H. Spiess, U. Tracht, M. Wilhelm, J. Non-Cryst, Solids 235–237, 1 (1998)Google Scholar
  5. 5.
    M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    E.V. Russell, N.E. Israeloff, Nature 408, 695 (2000)CrossRefGoogle Scholar
  7. 7.
    R. Richert, J. Phys.: Cond. Matter 14, R703 (2002)Google Scholar
  8. 8.
    K. Schmidt-Rohr, H. Spiess, Phys. Rev. Lett. 66, 3020 (1991)CrossRefPubMedGoogle Scholar
  9. 9.
    A. Heuer, M. Wilhelm, H. Zimmermann, H. Spiess, Phys. Rev. Lett. 75, 2851 (1995)CrossRefPubMedGoogle Scholar
  10. 10.
    R. Böhmer, G. Hinze, G. Diezemann, B. Geil, H. Sillescu, Europhys. Lett. 36, 55 (1996)CrossRefGoogle Scholar
  11. 11.
    B. Schiener, R. Böhmer, A. Loidl, R. Chamberlin, Science 274, 752 (1996)CrossRefGoogle Scholar
  12. 12.
    B. Schiener, R. Chamberlin, G. Diezemann, R. Böhmer, J. Chem. Phys. 107, 7746 (1997)CrossRefGoogle Scholar
  13. 13.
    R.V. Chamberlin, Phys. Rev. Lett. 83, 5134 (1999)CrossRefGoogle Scholar
  14. 14.
    X. Shi, G.B. McKenna, Phys. Rev. B 73, 1 (2006)Google Scholar
  15. 15.
    J. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Richert, J. Phys.: Cond. Matter 29, 363001 (2017)Google Scholar
  17. 17.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hote, G. Biroli, J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)CrossRefPubMedGoogle Scholar
  18. 18.
    C. Brun, F. Ladieu, D. L’Hote, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Weinstein, R. Richert, Phys. Rev. B 75, 064302 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Rzoska, A. Drozd-Rzoska, J. Phys.: Cond. Matter 24, 035101 (2012)Google Scholar
  22. 22.
    M. Tarzia, G. Biroli, A. Lefevre, J.-P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)CrossRefPubMedGoogle Scholar
  23. 23.
    F. Ladieu, C. Brun, D. L’hôte, Phys. Rev. B 85, 184207 (2012)Google Scholar
  24. 24.
    U. Buchenau, J. Chem. Phys. 146 (2017)CrossRefPubMedGoogle Scholar
  25. 25.
    J. Dejardin, Y. Kalmykov, Phys. Rev. E 61, 1211 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)CrossRefPubMedGoogle Scholar
  27. 27.
    G. Diezemann, Phys. Rev. E 85, 051502 (2012)CrossRefGoogle Scholar
  28. 28.
    G. Diezemann, Phys. Rev. E 96, 022150 (2017)CrossRefPubMedGoogle Scholar
  29. 29.
    A. Morita, Phys. Rev. A 34, 1499 (1986)CrossRefGoogle Scholar
  30. 30.
    J. Dejardin, G. Debiais, Adv. Chem. Phys. 91, 241 (1995)Google Scholar
  31. 31.
    Y. Kalmykov, Phys. Rev. E 65, 021101 (2001)CrossRefGoogle Scholar
  32. 32.
    P.M. Déjardin, F. Ladieu, J. Chem. Phys. 140, 034506 (2014)CrossRefPubMedGoogle Scholar
  33. 33.
    N. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)Google Scholar
  34. 34.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)CrossRefGoogle Scholar
  35. 35.
    G. Gardiner, Handbook of Statistical Methods for Physics, Chemistry and Natural Sciences (Springer, Berlin, 1997)Google Scholar
  36. 36.
    D.T. Gillespie, Markov Processes (Academic Press, San Diego, 1992)Google Scholar
  37. 37.
    G. Diezemann, H. Sillescu, J. Chem. Phys. 111, 1126 (1999)CrossRefGoogle Scholar
  38. 38.
    R. Böhmer, G. Diezemann, G. Hinze, E.A. Roessler, Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)CrossRefGoogle Scholar
  39. 39.
    A. Kivelson, S. Kivelson, J. Chem. Phys. 90, 4464 (1989)CrossRefGoogle Scholar
  40. 40.
    L. Alessi, L. Andreozzi, M. Faetti, D. Liporini, J. Chem. Phys. 114, 3631 (2001)CrossRefGoogle Scholar
  41. 41.
    G. Diezemann, J. Chem. Phys. 107, 10112 (1997)CrossRefGoogle Scholar
  42. 42.
    G. Diezemann, H. Sillescu, G. Hinze, R. Böhmer, Phys. Rev. E 57, 4398 (1998)CrossRefGoogle Scholar
  43. 43.
    G. Diezemann, R. Böhmer, G. Hinze, H. Sillescu, J. Non-Cryst, Solids 235–237, 121 (1998)Google Scholar
  44. 44.
    R. Böhmer, G. Diezemann, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)Google Scholar
  45. 45.
    K. Schulten, Z. Schulten, A. Szabo, J. Chem. Phys. 74, 4426 (1981)CrossRefGoogle Scholar
  46. 46.
    J. Dyre, Phys. Rev. B 51, 12276 (1995)CrossRefGoogle Scholar
  47. 47.
    C. Monthus, J. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)CrossRefGoogle Scholar
  48. 48.
    R. Denny, D. Reichman, J. Bouchaud, Phys. Rev. Lett. 90, 025503 (2003)CrossRefPubMedGoogle Scholar
  49. 49.
    G. Diezemann, J. Phys.: Cond. Mat. 19, 205107 (2007)Google Scholar
  50. 50.
    C. Rehwald, N. Gnan, A. Heuer, T. Schrøder, J. Dyre, G. Diezemann. Phys. Rev. E 82, 021503 (2010)Google Scholar
  51. 51.
    A. Heuer, J. Phys.: Cond. Matter 20, 373101 (2008)Google Scholar
  52. 52.
    N. Agmon, J. Hopfield, J. Chem. Phys. 78, 6947 (1983)CrossRefGoogle Scholar
  53. 53.
    G. Diezemann, Europhys. Lett. 53, 604 (2001)CrossRefGoogle Scholar
  54. 54.
    A. Crisanti, F. Ritort, J. Phys. A: Math. Gen. 36, R181 (2003)CrossRefGoogle Scholar
  55. 55.
    G. Diezemann, Phys. Rev. E 72, 011104 (2005)CrossRefGoogle Scholar
  56. 56.
    S. Fielding, P. Sollich, Phys. Rev. Lett. 88, 050603 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Physikalische ChemieUniversität MainzMainzGermany

Personalised recommendations