Advertisement

Applications of the “Classical” Metamaterial Model—Disordered Metamaterials

  • Arkadi ChipoulineEmail author
  • Franko Küppers
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)

Abstract

In this chapter, the influence of the short-range lateral disorder in the MAs positioning on the effective parameters of the MMs is investigated using the multipole approach. Random variation of the near field quasi-static interaction between MAs in form of double-wires is shown to be the reason for the effective permittivity and permeability changes. The obtained analytical results are compared with known experimental data.

References

  1. 1.
    A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Multipole approach in electrodynamics of Metamaterials. Appl. Phys. A 103, 899–904 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Chipouline, S. Sugavanam, J. Petschulat, T. Pertsch, Metamaterials with interacting metaatoms (2012). http://arxiv.org/abs/1205.6839
  3. 3.
    J. Pendry, Light finds a way through maze. Physics 1, 20 (2008)CrossRefGoogle Scholar
  4. 4.
    P. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)CrossRefGoogle Scholar
  5. 5.
    J. Pendry, Quasi-extended electron states in strongly disordered systems. J. Phys. C Solid State Phys. 20(5), 733 (1987)CrossRefGoogle Scholar
  6. 6.
    A. Tartakovskii, M. Fistul, M. Raikh, I. Ruzin, Hopping conductivity of metal-semiconductormetal contacts. Sov. Phys. Semicond. 21, 370 (1987)Google Scholar
  7. 7.
    J. Bertolotti, S. Gottardo, D.S. Wiersma, M. Ghulinyan, L. Pavesi, Optical necklace states in Anderson localized 1D systems. PRL 94(11), 113903 (2005)CrossRefGoogle Scholar
  8. 8.
    K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, A.Z. Genack, B. Hu, P. Sebbah, Localized modes in open one dimensional dissipative random systems. PRL 97(24), 243904 (2006)CrossRefGoogle Scholar
  9. 9.
    A. Alù, N. Engheta, Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles. New J. Phys. 12, 013015 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Rüting, Plasmons in disordered nanoparticle chains: localization and transport (2011). arXiv:1102.2705v1
  11. 11.
    D. Mogilevtsev, F. Pinheiro, R. dos Santos, S. Cavalcanti, L. Oliveira, Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder. Phys. Rev. B 84, 094204 (2011)CrossRefGoogle Scholar
  12. 12.
    W. Tan, Y. Sun, Z.-G. Wang, H. Chen, H.-Q. Lin, Transparency induced by coupled resonances in disordered metamaterials. Opt. Express 17, 24371 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Jylhä, I. Kolmakov, S. Maslovski, S. Tretyakov, Modeling of isotropic backward-wave materials composed of resonant spheres. J. Appl. Phys. 99, 043102 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Gorkunov, S. Gredeskul, I. Shadrivov, Y. Kivshar, Effect of microscopic disorder on magnetic properties of metamaterials. Phys. Rev. E 73, 056605 (2006)CrossRefGoogle Scholar
  15. 15.
    X. Zhou, X. Zhao, Y. Liu, Disorder effects of left-handed metamaterials with unitary dendritic structure cell. Opt. Express 16, 7674 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Rico-García, J. López-Alonso, A. Aradian, Toy model to describe the effect of positional blocklike disorder in metamaterials composites. JOSA B 29, 53 (2012)CrossRefGoogle Scholar
  17. 17.
    N. Papasimakis, V.A. Fedotov, Y.H. Fu, D.P. Tsai, N.I. Zheludev, Coherent and incoherent metamaterials and order-disorder transitions. Phys. Rev. B 80, 041102(R) (2009)Google Scholar
  18. 18.
    A. Boltasseva, V.M. Shalaev, Fabrication of optical negative-index metamaterials: recent advanced and outlook. Metamaterials 2 (2008)CrossRefGoogle Scholar
  19. 19.
    J. Wright, O. Worsfold, C. Whitehouse, M. Himmelhaus, Ultra at ternary nanopatterns fabricated using colloidal lithography. Adv. Mater. 18, 421 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Hanarp, D. Sutherland, J. Gold, B. Kasemo, Nanostructured model biomaterial surfaces prepared by colloidal lithography. Nanostruct. Mater. 12, 429 (1999)CrossRefGoogle Scholar
  21. 21.
    R. Glass, M. Moeller, J.P. Spatz, Block copolymer micelle nanolithography. Nanotechnology 14, 1153 (2003)CrossRefGoogle Scholar
  22. 22.
    C. Helgert, C. Rockstuhl, C. Etrich, E.-B. Kley, A. Tuennermann, F. Lederer, T. Pertsch, Effective properties of amorphous metamaterials. Phys. Rev. B 79, 233107 (2009)CrossRefGoogle Scholar
  23. 23.
    N. Gippius, T. Weiss, S. Tikhodeev, H. Giessen, Resonant mode coupling of optical resonances in stacked nanostructures. Opt. Express 18, 7569 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation. Opt. Express 18, 654529 (2010)CrossRefGoogle Scholar
  25. 25.
    P. Mazur, B. Nijboer, On the statistical mechanics of matter in an electromagnetic field. I. Physica XIX, 971 (1953)CrossRefGoogle Scholar
  26. 26.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Chipouline, S. Sugavanam, J. Petschulat, T. Pertsch, Extension of the multipole approach to random metamaterials. Adv. Optoelectron. 2012, Article ID 161402 (2012)Google Scholar
  28. 28.
    D. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, J. Smalc, I. Vendik, How far are we from making metamaterials by self organization: the microstructure of highly anisotropic particles with an srr-like geometry. Adv. Func. Mater. 20, 1116 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microwave Engineering and PhotonicsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Department of Electrical Engineering and Information TechnologiesTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations