Applications of the “Classical” Metamaterial Model—Metamaterials with Interaction Between Meta-Atoms

  • Arkadi ChipoulineEmail author
  • Franko Küppers
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)


The interaction between the small particles (meta-atoms), either dielectric or metallic, and the propagation of an optical excitation in a regular chain of such particles has been extensively investigated [1, 2, 3, 4, 5, 6]. Interest in the behavior of chains of metallic nanoparticles was driven mainly by the pursuit of subwavelength guiding structures for a new generation of the optoelectronic components in the area of communication and information processing. Nevertheless, theoretical tools for the modeling of these chains (irrespective to the nature and sizes) remain invariant: the electromagnetic excitation in the particles is supposed to be described by taking into account all possible eigenmodes [1, 3] and interactions between all particles in a chain.


  1. 1.
    C.-S. Deng, H. Xu, and Lev Deych, Optical transport and statistics of radiative losses in disordered chains of microspheres. Phys. Rev. A 82, 041803(R) (2010)Google Scholar
  2. 2.
    W. Weber, G. Ford, Propagation of optical excitations by dipolar interactions in metal nanoparticle chains. Phys. Rev. B 70, 125429 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331 (1998)CrossRefGoogle Scholar
  4. 4.
    N. Gippius, T. Weiss, S. Tikhodeev, H. Giessen, Resonant mode coupling of optical resonances in stacked nanostructures. Opt. Express 18, 7569 (2010)CrossRefGoogle Scholar
  5. 5.
    N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, S. Linden, Electromagnetic interaction of split-ring resonators: the role of separation and relative orientation. Opt. Express 18, 654529 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Alù, N. Engheta, Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. Phys. Rev. B 74, 205436 (2006)CrossRefGoogle Scholar
  7. 7.
    J. Rico-García, J. López-Alonso, A. Aradian, Toy model to describe the effect of positional blocklike disorder in metamaterials composites. JOSA B 29, 53 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Maier, P. Kik, H. Atwater, Optical pulse propagation in metal nanoparticle chain waveguides. Phys. Rev. B 67, 205402 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Alù, N. Engheta, Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles. New J. Phys. 12, 013015 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Chipouline, J. Petschulat, A. Tuennermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Multipole approach in electrodynamics of Metamaterials. Appl. Phys. A 103, 899–904 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Simovski, Material parameters of metamaterials (a review). Opt. Spectrosc. 107, 726 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Simovski, On electromagnetic characterization and homogenization of nanostructured metamaterials. J. Opt. 13, 013001 (2011)CrossRefGoogle Scholar
  14. 14.
    E. Tatartschuk, A. Radkovskaya, E. Shamonina, L. Solymar, Generalized Brillouin diagrams for evanescent waves in metamaterials with interelement coupling. Phys. Rev. B 81, 115110 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Radkovskaya, E. Tatartschuk, O. Sydoruk, E. Shamonina, C. Stevens, D. Edwards, L. Solymar, Surface waves at an interface of two metamaterial structures with interelement coupling. Phys. Rev. B 82, 045430 (2010)CrossRefGoogle Scholar
  16. 16.
    A. Radkovskaya, O. Sydoruk, E. Tatartschuk, N. Gneiding, C. Stevens, D. Edwards, E. Shamonina, Dimer and polymer metamaterials with alternating electric and magnetic coupling. Phys. Rev. B 84, 125121 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Shamonina, Magnetoinductive polaritons: hybrid modes of metamaterials with interelement coupling. Phys. Rev. B 85, 155146 (2012)CrossRefGoogle Scholar
  18. 18.
    Z. Jacob, L. Alekseev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006)CrossRefGoogle Scholar
  19. 19.
    E. Clayton, G.H. Derrick, A numerical solution of wave equations for real or complex Eigenvalues. Aust. J. Phys. 30, 15 (1977)CrossRefGoogle Scholar
  20. 20.
    D. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. Ramakrishna, J. Pendry, Limitation on subdiffraction imaging with a negative refractive index slab. APL 82, 1506 (2003)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microwave Engineering and PhotonicsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Department of Electrical Engineering and Information TechnologiesTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations