Applications of the “Classical” Metamaterial Model—Optical Activity and Electromagnetically Induced Transparency

  • Arkadi ChipoulineEmail author
  • Franko Küppers
Part of the Springer Series in Optical Sciences book series (SSOS, volume 211)


In the initial stage of research on MMs emphasis was put on exploring materials that potentially lead to a biaxial anisotropic (linear dichroism) effective material response [1, 2, 3, 4, 5, 6]. Recently research was also extended toward the exploration of meta-atoms that affect off-diagonal elements of the effective material tensors (elliptical dichroism). It expands the number of observable optical phenomena, leading to, e.g., optical activity [7, 8, 9, 10, 11] bidirectional and asymmetric transmission [12, 13, 14] or chirality-induced negative refraction [15, 16, 17]. In general, investigating the geometry of the MM (the meta-atoms geometry and their arrangement) allows us to determine the form of the effective material tensors in the quasistatic limit as extensively discussed in [8]. From such considerations it is possible to conclude on the symmetry of the plasmonic eigenmodes sustained by the MAs and on the polarization of the eigenmodes allowed to propagate in the effective medium [12]. But in order to determine the actual frequency dependence of the tensor elements, more extended models are needed which start in their description of the MA properties from scratch [14].


  1. 1.
    U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Opt. Lett. 32, 1671 (2007)CrossRefGoogle Scholar
  2. 2.
    G. Dolling, M. Wegener, C. Soukoulis, Opt. Lett. 32, 53 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, X. Zhang, Nature 455, 376 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, T. Pertsch, Opt. Lett. 34, 704 (2009)CrossRefGoogle Scholar
  5. 5.
    C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Opt. Lett. 34, 1603 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, M. Wegener, Opt. Lett. 34, 19 (2009)CrossRefGoogle Scholar
  7. 7.
    B. Bai, Y. Svirko, J. Turunen, T. Vallius, Phys. Rev. A 76, 023811 (2007)CrossRefGoogle Scholar
  8. 8.
    L. Arnaut, J. Electromagn. Waves Appl. 11, 1459 (1997)CrossRefGoogle Scholar
  9. 9.
    J. Reyes, A. Lakhtakia, Opt. Commun. 266, 565 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Prosvirnin, N. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074002 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003)CrossRefGoogle Scholar
  12. 12.
    V. Fedotov, P. Mladyonov, S. Prosvirnin, A.V. Rogacheva, Y. Chen, N. Zheludev, PRL 97, 167401 (2006)CrossRefGoogle Scholar
  13. 13.
    V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, S. Prosvirnin, Nano Lett. 7, 1997 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Zhukovsky, A. Novitsky, V. Galynsky, Opt. Lett. 34, 1988 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Pendry, Science 306, 1353 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Tretyakov, A. Sihvola, L. Jylhä, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005)CrossRefGoogle Scholar
  17. 17.
    J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. Soukoulis, Phys. Rev. B 79, 1 (2009)Google Scholar
  18. 18.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Onsager, Phys. Rev. 37, 405 (1931)CrossRefGoogle Scholar
  20. 20.
    H. Casimir, Rev. Mod. Phys. 17, 343 (1945)CrossRefGoogle Scholar
  21. 21.
    S. Tretyakov, A. Sihvola, B. Jancewicz, J. Electromagn. Waves Appl. 16, 573 (2002)CrossRefGoogle Scholar
  22. 22.
    J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Phys. Rev. A 80, 063828 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Raether, Surface Plasmons (Springer, New York, 1988)Google Scholar
  24. 24.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, PRL 95, 203901 (2005)CrossRefGoogle Scholar
  25. 25.
    R. Marqués, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, F. Lederer, Opt. Express 15, 8871 (2007)CrossRefGoogle Scholar
  27. 27.
    R. Raab, O. De Lange, Multipole Theory in Electromagnetism (Clarendon, Oxford, 2005)Google Scholar
  28. 28.
    L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)CrossRefGoogle Scholar
  29. 29.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefGoogle Scholar
  30. 30.
    P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1998)Google Scholar
  31. 31.
    B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, J. Turunen, Appl. Phys. Lett. 86, 183109 (2005)CrossRefGoogle Scholar
  32. 32.
    B.K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, J. Opt. A: Pure Appl. Opt. 7, S110 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Decker, S. Linden, M. Wegener, Opt. Lett. 34, 1579 (2009)CrossRefGoogle Scholar
  34. 34.
    G. Borzdov, J. Math. Phys. 38, 6328 (1997)CrossRefGoogle Scholar
  35. 35.
    L. Li, J. Opt. A: Pure Appl. Opt. 5, 345 (2003)CrossRefGoogle Scholar
  36. 36.
    H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, APL 86, 151909 (2005)Google Scholar
  37. 37.
    H.S. Chen, L.X. Ran, J.T. Huangfu, X.M. Zhang, K.S. Chen, T.M. Grzegorczyk, J.A. Kong, Prog. Electromagn. Res. 51, 231 (2005)CrossRefGoogle Scholar
  38. 38.
    E. Prodan, C. Radloff, N. Halas, P. Nordlander, Science 302, 419 (2003)CrossRefGoogle Scholar
  39. 39.
    K. Boller, A. Imamoglu, S. Harris, Observation of electromagnetically induced transparency. PRL 66, 2593 (1991)CrossRefGoogle Scholar
  40. 40.
    S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)CrossRefGoogle Scholar
  41. 41.
    M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)CrossRefGoogle Scholar
  42. 42.
    Q. Xu et al., Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. PRL 96, 123901 (2006)CrossRefGoogle Scholar
  43. 43.
    E. Waks, J. Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems. PRL 96, 153601 (2006)CrossRefGoogle Scholar
  44. 44.
    M. Yanik, W. Suh, Z. Wang, S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. PRL 93, 233903 (2004)CrossRefGoogle Scholar
  45. 45.
    N. Papasimakis, V. Fedotov, N. Zheludev, PRL 101, 253903 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Zhang, D. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. PRL 101, 047401 (2008)CrossRefGoogle Scholar
  47. 47.
    N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)CrossRefGoogle Scholar
  48. 48.
    M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter. PRL 102, 107401 (2009)CrossRefGoogle Scholar
  49. 49.
    B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)CrossRefGoogle Scholar
  50. 50.
    J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, Simple and versatile analytical approach for planar metamaterials. Phys. Rev. B 82, 075102 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microwave Engineering and PhotonicsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Department of Electrical Engineering and Information TechnologiesTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations