Advertisement

Contact Mechanics in the Framework of Couple Stress Elasticity

  • Thanasis Zisis
  • Panos A. Gourgiotis
  • Haralambos G. GeorgiadisEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 90)

Abstract

The purpose of this work is to present general solutions for two-dimensional (2D) plane-strain contact problems within the framework of the generalized continuum theory of couple-stress elasticity. This theory is able to capture the scale effects, which are often observed in indentation problems with contact lengths comparable to the material microstructure. To this end, we formulate a number of basic contact problems in terms of singular integral equations using the pertinent Green’s function that corresponds to the solution of the analogue of the Flamant-Boussinesq problem of a half-space in couple-stress elasticity. In addition, we also provide results concerning the more complex traction boundary-value problem involving a deformable layer (again within couple-stress elasticity) of finite thickness superposed on a rigid half-space. We show that the contact behavior of materials with couple-stress effects depends strongly upon their microstructural characteristics, especially when the characteristic dimension of the microstructure becomes comparable to macroscopic characteristic dimensions of the contact problem. The latter lengths could be either the contact length/area or even the thickness of the layer.

References

  1. 1.
    Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)CrossRefGoogle Scholar
  2. 2.
    Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Y.V.: Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855–2865 (1993)CrossRefGoogle Scholar
  3. 3.
    Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)CrossRefGoogle Scholar
  4. 4.
    Poole, W.J., Ashby, M.F., Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater. 34, 559–564 (1996)CrossRefGoogle Scholar
  5. 5.
    Huber, N., Nix, W.D., Gao, H.: Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc. R. Soc. Lond. A 458, 1593–1620 (2002)CrossRefGoogle Scholar
  6. 6.
    Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRefGoogle Scholar
  7. 7.
    Larsson, P.L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)CrossRefGoogle Scholar
  8. 8.
    Han, C.-S., Nikolov, S.: Indentation size effects in polymers and related rotation gradients. J. Mater. Res. 22, 1662–1672 (2007)CrossRefGoogle Scholar
  9. 9.
    Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Hutchinson, J.W., Evans, A.G.: Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure. Acta Mater. 52, 565–571 (2004)CrossRefGoogle Scholar
  11. 11.
    Stupkiewicz, S.: Micromechanics of contact and interphase layers. In: Lecture Notes in Applied and Computational Mechanics, vol. 30. Springer, Berlin (2007)Google Scholar
  12. 12.
    Fleck, N.A., Zisis, Th: The erosion of EB-PVD thermal barrier coatings: the competition between mechanisms. Wear 268, 1214–1224 (2010)CrossRefGoogle Scholar
  13. 13.
    Zisis, Th, Fleck, N.A.: The elastic–plastic indentation response of a columnar thermal barrier coating. Wear 268, 443–454 (2010)CrossRefGoogle Scholar
  14. 14.
    Tekoglu, C., Onck, P.R.: Size effects in two dimensional Voronoi foams. A comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)CrossRefGoogle Scholar
  15. 15.
    Muki, R., Sternberg, E.: The influence of couple-stresses on singular stress concentrations in elastic solids. Z. Angew. Math. Phys. (ZAMP) 16, 611–648 (1965)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Begley, M.R., Hutchinson, J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46, 2049–2068 (1998)CrossRefGoogle Scholar
  17. 17.
    Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)CrossRefGoogle Scholar
  18. 18.
    Shu, J.Y., Fleck, N.A.: The prediction of a size effect in microindentation. Int. J. Solids Struct. 35, 1363–1383 (1998)CrossRefGoogle Scholar
  19. 19.
    Wei, Y., Hutchinson, J.W.: Hardness trends in micron scale indentation. J. Mech. Phys. Solids 51, 2037–2056 (2003)CrossRefGoogle Scholar
  20. 20.
    Nielsen, K.L., Niordson, C.F., Hutchinson, J.W.: Strain gradient effects in periodic flat punch indenting at small scales. Int. J. Solids Struct. 51, 3549–3556 (2014)CrossRefGoogle Scholar
  21. 21.
    Cauchy, A.L.: Note sur l’ equilibre et les mouvements vibratoires des corps solides. Comptes-Rendus Acad. Paris 32, 323–326 (1851)Google Scholar
  22. 22.
    Voigt, W.: Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abh. Ges. Wiss. Gottingen 34, 3–100 (1887)Google Scholar
  23. 23.
    Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)zbMATHGoogle Scholar
  24. 24.
    Toupin, R.A.: Theory of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85–112 (1964)CrossRefGoogle Scholar
  25. 25.
    Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Koiter, W.T.: Couple-stresses in the theory of elasticity. Parts I and II. Proc. Ned Akad. Wet. B67, 17–44 (1964)zbMATHGoogle Scholar
  27. 27.
    Chen, J.Y., Huang, Y., Ortiz, M.: Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789–828 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. ASME J. Appl. Mech. 74, 741–753 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shodja, H.M., Zaheri, A., Tehranchi, A.: Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mech. Mater. 61, 73–78 (2013)CrossRefGoogle Scholar
  30. 30.
    Zhang, X., Sharma, P.: Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems. Int. J. Solids Struct. 42, 3833–3851 (2005)CrossRefGoogle Scholar
  31. 31.
    Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Continuum Models for Materials with Microstructure, pp. 1–25 (1995)Google Scholar
  32. 32.
    Lakes, R.S.: Strongly Cosserat elastic lattice and foam materials for enhanced toughness. Cell. Polym. 12, 17–30 (1993)Google Scholar
  33. 33.
    Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18, 2572–2580 (1983)CrossRefGoogle Scholar
  34. 34.
    Gourgiotis, P.A., Piccolroaz, A.: Steady-state propagation of a Mode II crack in couple stress elasticity. Int. J. Fract. 188, 119–145 (2014)CrossRefGoogle Scholar
  35. 35.
    Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)CrossRefGoogle Scholar
  36. 36.
    Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, Oxford (1968)zbMATHGoogle Scholar
  37. 37.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, New York (1952)Google Scholar
  38. 38.
    Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ (1965)Google Scholar
  39. 39.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  40. 40.
    Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)CrossRefGoogle Scholar
  41. 41.
    Hills, D., Nowell, D.: Mechanics of Fretting Fatigue. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  42. 42.
    Barber, J.R.: Elasticity. In: Solid Mechanics and its Applications, vol. 172. Springer, Netherlands (2010)Google Scholar
  43. 43.
    Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20, 1088–1106 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Gourgiotis, P.A., Zisis, Th: Two-dimensional indentation of microstructured solids characterized by couple-stress elasticity. J. Strain Anal. Eng. Design 51, 318–331 (2016)CrossRefGoogle Scholar
  45. 45.
    Zisis, Th, Gourgiotis, P.A., Baxevanakis, K.P., Georgiadis, H.G.: Some basic contact problems in couple-stress elasticity. Int. J. Solids Struct. 51, 2084–2095 (2014)CrossRefGoogle Scholar
  46. 46.
    Roos, B.W.: Analytic Functions and Distributions in Physics and Engineering. Wiley, New York (1969)zbMATHGoogle Scholar
  47. 47.
    de Borst, R.: A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103, 347–362 (1993)CrossRefGoogle Scholar
  48. 48.
    Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic & Professional (Chapman and Hall), London (1995)Google Scholar
  49. 49.
    Szegö, G.: Orthogonal Polynomials, vol. 23. Colloquium Publications, American Mathematical Society (1939)Google Scholar
  50. 50.
    Erdogan F., Gupta G.D., Cook T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Mechanics of Fracture: Methods of Analysis and Solutions of Crack Problems, vol. 1, pp. 368–425 (1973)CrossRefGoogle Scholar
  51. 51.
    Ioakimidis, N.I.: The numerical solution of crack problems in plane elasticity in the case of loading discontinuities. Eng. Fract. Mech. 15, 709–716 (1980)CrossRefGoogle Scholar
  52. 52.
    Sackfield, A., Truman, C.E., Hills, D.A.: The tilted punch under normal and shear load (with application to fretting tests). Int. J. Mech. Sci. 43, 1881–1892 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thanasis Zisis
    • 1
  • Panos A. Gourgiotis
    • 2
  • Haralambos G. Georgiadis
    • 1
    • 3
    Email author
  1. 1.Mechanics DivisionNational Technical University of AthensZographouGreece
  2. 2.School of Engineering & Computing SciencesDurham UniversityDurhamUK
  3. 3.Office of Theoretical and Applied MechanicsAcademy of AthensAthensGreece

Personalised recommendations