Multiscale Modeling of 2D Material MoS2 from Molecular Dynamics to Continuum Mechanics
Abstract
Research on two dimensional (2D) materials, such as Graphene and Molybdenum disulfide (MoS2), now involves thousands of researchers worldwide, implementing cutting edge technology to study them. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. This work introduces atomistic simulation methodologies, based on interatomic potential, as a tool to unveil the mechanical and thermal properties at nanoscale of MoS2, a material that has attracted most research interests among all 2D materials. Young’s modulus, Poison’s ratio, heat conductivity and heat capacity at atomic scale are studied. These findings lend compelling insights into the atomistic mechanism of MoS2. Then, based on these useful information, we perform concurrent multiscale modeling of MoS2 from molecular dynamics simulation in atomic region to finite element analysis in continuum region.
References
- 1.Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)CrossRefGoogle Scholar
- 2.Alder, B.J., Wainwright, T.E.: Studies in molecular dnamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)MathSciNetCrossRefGoogle Scholar
- 3.Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley (2011)Google Scholar
- 4.Chen, Y., Lee, J.D., Eskandarin, A.: Meshless Methods in Solid Mechanics. Springer (2006)Google Scholar
- 5.de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland Pub, Co (1972)Google Scholar
- 6.Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer (1999)Google Scholar
- 7.Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
- 8.Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)CrossRefGoogle Scholar
- 9.Jiang, J.P.: Molecular dynamics simulations of single-layer molybdenum disulfide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. J. Appl. Phys. 114(6), 064307 (2013)CrossRefGoogle Scholar
- 10.Laudau, L.D.: Theory of phase changes. I. Physikalische Z. Sowjetunion 11, 26–47 (1937)Google Scholar
- 11.Lee, J.D., Li, J., Zhang, Z., Wang, L.: Sequential and concurrent multiscale modeling of multiphysics: from atoms to continuum. In: Meguid, S.A., Weng, G. J. (eds.) Micromechanics and Nanomechanics of Composite Solids. Springer (2017)Google Scholar
- 12.Li, J., Lee, J.D.: Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale. Acta Mech. 225, 1223–1233 (2014)CrossRefGoogle Scholar
- 13.Li, X., Zhu, H.: Two-dimensional MoS2: properties, preparation, and applications. J. Mater. 1, 33–44 (2015)Google Scholar
- 14.Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)CrossRefGoogle Scholar
- 15.Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 53, 255–268 (1984)CrossRefGoogle Scholar
- 16.Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRefGoogle Scholar
- 17.Stewart, J., Spearot, D.: Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Model. Simul. Mater. Sci. Eng. 21(4), 045003(2013)CrossRefGoogle Scholar
- 18.Stillinger, F.H., Rahman, A.: Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545–1557 (1974)CrossRefGoogle Scholar
- 19.Subramaniyan, A.K., Sun, C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008)CrossRefGoogle Scholar