Advertisement

Apoptosis-Inducing Factor Translocation to Nuclei After Transient Global Ischemia

  • Yang Sun
  • Tuo Yang
  • Jessica Zhang
  • Armando P. Signore
  • Guodong Cao
  • Jun Chen
  • Feng Zhang
Chapter

Abstract

As a common human disorder, global ischemia causes long-term cognitive dysfunction. Selective death of hippocampal CA1 neurons underlies the cognitive impairment. After global ischemia, CA1 neuronal death occurs in a delayed manner, suggesting a type of programmed cell death. Apoptosis-inducing factor (AIF) is a mitochondrial protein with an important role in energy metabolism under physiological conditions. Following ischemia, AIF leaves mitochondria, translocates into nuclei, and induces DNA cleavage and chromatin condensation, therefore playing critical roles in inducing caspase-independent programmed cell death. In this chapter, we summarize the roles of AIF in CA1 nearonal death following global ischemia, highlighting recent progress.

Keywords

AIF Apoptosis Stroke Neuropretection 

References

  1. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893PubMedCrossRefGoogle Scholar
  2. Andrabi SA, Kim NS, Yu SW, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103:18308–18313PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arrington DD, Van Vleet TR, Schnellmann RG (2006) Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291:C1159–C1171PubMedCrossRefGoogle Scholar
  4. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, Lenormand P, Rousselle JC, Namane A, England P, Lorenzo HK, Susin SA (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29:1585–1599PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, Susin SA (2012) AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 3:e390PubMedPubMedCentralCrossRefGoogle Scholar
  6. Belizario JE, Alves J, Occhiucci JM, Garay-Malpartida M, Sesso A (2007) A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res 40:1011–1024PubMedCrossRefGoogle Scholar
  7. Blomgren K, Zhu C, Wang X, Karlsson JO, Leverin AL, Bahr BA, Mallard C, Hagberg H (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198PubMedCrossRefGoogle Scholar
  8. Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:2612–2619PubMedCrossRefGoogle Scholar
  9. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274:22932–22940PubMedCrossRefGoogle Scholar
  10. Breckenridge DG and Xue D (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 16:647–652PubMedCrossRefGoogle Scholar
  11. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222PubMedCrossRefGoogle Scholar
  13. Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521PubMedCrossRefGoogle Scholar
  14. Cao G, Clark RS, Pei W, Yin W, Zhang F, Sun FY, Graham SH, Chen J (2003) Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab 23:1137–1150PubMedCrossRefGoogle Scholar
  15. Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, Clark RS, Graham SH, Chen J (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chae SU, Ha KC, Piao CS, Chae SW, Chae HJ (2007) Estrogen attenuates cardiac ischemia-reperfusion injury via inhibition of calpain-mediated bid cleavage. Arch Pharm Res 30:1225–1235PubMedCrossRefGoogle Scholar
  17. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232–245PubMedCrossRefGoogle Scholar
  18. Cheung EC, Joza N, Steenaart NA, Mcclellan KA, Neuspiel M, Mcnamara S, Maclaurin JG, Rippstein P, Park DS, Shore GC, Mcbride HM, Penninger JM, Slack RS (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cipriani G, Rapizzi E, Vannacci A, Rizzuto R, Moroni F, Chiarugi A (2005) Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem 280:17227–17234CrossRefPubMedGoogle Scholar
  21. Cregan SP, Fortin A, Maclaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517PubMedPubMedCentralCrossRefGoogle Scholar
  22. Culmsee C, Zhu CL, Landshamer S, Becattini B, Wagner E, Pellecchia M, Blomgren K, Plesnila N (2005) Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia (vol 25, pg 10262, 2005). J Neurosci 25Google Scholar
  23. Dalla Via L, Garcia-Argaez AN, Martinez-Vazquez M, Grancara S, Martinis P, Toninello A (2014) Mitochondrial permeability transition as target of anticancer drugs. Curr Pharm Des 20:223–244PubMedCrossRefGoogle Scholar
  24. David G Breckenridge, Ding Xue, (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Current Opinion in Cell Biology 16 (6):647–652PubMedCrossRefGoogle Scholar
  25. Demurcia G, Demurcia JM (1994) Poly(ADP-Ribose) polymerase—a molecular nick-sensor. Trends Biochem Sci 19:172–176CrossRefGoogle Scholar
  26. El Ghouzzi V, Csaba Z, Olivier P, Lelouvier B, Schwendimann L, Dournaud P, Verney C, Rustin P, Gressens P (2007) Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology. J Neuropathol Exp Neurol 66:838–847PubMedCrossRefGoogle Scholar
  27. Eliasson MJL, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095PubMedPubMedCentralCrossRefGoogle Scholar
  28. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983PubMedCrossRefGoogle Scholar
  29. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151PubMedCrossRefGoogle Scholar
  30. Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, Chan PH (1999) Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 19:3414–3422PubMedCrossRefGoogle Scholar
  31. Gagne JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, Dawson TM, Poirier GG (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res 36:6959–6976PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garcia M, Bondada V, Geddes JW (2005) Mitochondrial localization of mu-calpain. Biochem Biophys Res Commun 338:1241–1247CrossRefPubMedGoogle Scholar
  33. Giffard RG, Yenari MA (2004) Many mechanisms for Hsp70 protection from cerebral ischemia. J Neurosurg Anesthesiol 16:53–61PubMedCrossRefGoogle Scholar
  34. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43PubMedCrossRefGoogle Scholar
  35. Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33:1101–1106PubMedPubMedCentralCrossRefGoogle Scholar
  36. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109PubMedCrossRefGoogle Scholar
  37. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Millman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-X-L prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163PubMedCrossRefGoogle Scholar
  38. Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, Kouranti I, Spahr C, Pance A, Kroemer G, Garrido C (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678PubMedCrossRefGoogle Scholar
  39. Ha HC (2004) Defective transcription factor activation for proinflammatory gene expression in poly(ADP-ribose) polymerase 1-deficient glia. Proc Natl Acad Sci U S A 101:5087–5092PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hamby AM, Suh SW, Kauppinen TM, Swanson RA (2007) Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38:632–636PubMedCrossRefPubMedCentralGoogle Scholar
  42. Handschumacher RE, Harding MW, Rice J, Drugge RJ (1984) Cyclophilin—a specific cytosolic binding-protein for cyclosporin-A. Science 226:544–547PubMedCrossRefPubMedCentralGoogle Scholar
  43. Herceg Z, Wang ZQ (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19:5124–5133PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jin KL, Chen J, Nagayama T, Chen MZ, Sinclair J, Graham SH, Simon RP (1999) In situ detection of neuronal DNA strand breaks using the Klenow fragment of DNA polymerase I reveals different mechanisms of neuron death after global cerebral ischemia. J Neurochem 72:1204–1214PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kato M, Nonaka T, Maki M, Kikuchi H, Imajoh-Ohmi S (2000) Caspases cleave the amino-terminal calpain inhibitory unit of calpastatin during apoptosis in human Jurkat T cells. J Biochem 127:297–305PubMedCrossRefPubMedCentralGoogle Scholar
  46. Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation down-regulates apoptosis-inducing factor. Nature 419:367–374PubMedCrossRefPubMedCentralGoogle Scholar
  47. Komjati K, Besson VC, Szabo C (2005) Poly (ADP-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS Neurol Disord 4:179–194PubMedCrossRefPubMedCentralGoogle Scholar
  48. Krantic S, Mechawar N, Reix S, Quirion R (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81:179–196CrossRefPubMedGoogle Scholar
  49. Kroemer G (2001) Heat shock protein 70 neutralizes apoptosis-inducing factor. ScientificWorld J 1:590–592CrossRefGoogle Scholar
  50. Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27PubMedCrossRefGoogle Scholar
  51. Lewis EM, Wilkinson AS, Davis NY, Horita DA, Wilkinson JC (2011) Nondegradative ubiquitination of apoptosis inducing factor (AIF) by X-linked inhibitor of apoptosis at a residue critical for AIF-mediated chromatin degradation. Biochemistry 50:11084–11096PubMedPubMedCentralCrossRefGoogle Scholar
  52. Li JH, Grynspan F, Berman S, Nixon R, Bursztajn S (1996) Regional differences in gene expression for calcium activated neutral proteases (calpains) and their endogenous inhibitor calpastatin in mouse brain and spinal cord. J Neurobiol 30:177–191PubMedCrossRefGoogle Scholar
  53. Li X, Klaus JA, Zhang J, Xu Z, Kibler KK, Andrabi SA, Rao K, Yang Z-J, Dawson TM, Dawson VL, Koehler RC (2010) Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J Neurochem 113:1012–1022PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li X, Nemoto M, Xu Z, Yu SW, Shimoji M, Andrabi SA, Haince JF, Poirier GG, Dawson TM, Dawson VL, Koehler RC (2007) Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus. Neuroscience 144:56–65PubMedCrossRefPubMedCentralGoogle Scholar
  55. Liou AKF, Zhou ZG, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19:1350–1352PubMedCrossRefGoogle Scholar
  56. Mate MJ, Ortiz-Lombardia M, Boitel B, Haouz A, Tello D, Susin SA, Penninger J, Kroemer G, Alzari PM (2002) The crystal structure of the mouse apoptosis-inducing factor AIF. Nat Struct Biol 9(6):442PubMedCrossRefGoogle Scholar
  57. McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD (2005) Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 25:502–512PubMedCrossRefGoogle Scholar
  58. Mcginnis KM, Gnegy ME, Park YH, Mukerjee N, Wang KK (1999) Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 263:94–99CrossRefGoogle Scholar
  59. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398PubMedCrossRefGoogle Scholar
  60. Montague JW, Hughes FM Jr, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans-isomerase activity potential roles of cyclophilins in apoptosis. J Biol Chem 272:6677–6684PubMedCrossRefGoogle Scholar
  61. Muller GJ, Lassmann H, Johansen FF (2007) Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus. Neurobiol Dis 25:582–593PubMedCrossRefPubMedCentralGoogle Scholar
  62. Nagayama T, Simon RP, Chen DX, Henshall DC, Pei W, Stetler RA, Chen J (2000) Activation of poly(ADP-Ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 74:1636–1645PubMedCrossRefGoogle Scholar
  63. Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ozaki T, Tomita H, Tamai M, Ishiguro SI (2007) Characteristics of mitochondrial calpains. J Biochem 142:365–376PubMedCrossRefGoogle Scholar
  65. Pagnussat AD, Faccioni-Heuser MC, Netto CA, Achaval M (2007) An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion. J Anat 211:589–599PubMedCrossRefGoogle Scholar
  66. Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81:123–129PubMedCrossRefGoogle Scholar
  67. Plesnila N, Zhu CL, Culmsee C, Groger M, Moskowitz MA, Blomgren K (2004) Nuclear translocation of apoptosis-inducing factor after focal cerebral ischemia. J Cereb Blood Flow Metab 24:458–466PubMedCrossRefGoogle Scholar
  68. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454PubMedCrossRefGoogle Scholar
  69. Porn-Ares MI, Samali A, Orrenius S (1998) Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033PubMedCrossRefGoogle Scholar
  70. Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843PubMedCrossRefGoogle Scholar
  71. Reffey SB, Wurthner JU, Parks WT, Roberts AB, Duckett CS (2001) X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 276:26542–26549CrossRefGoogle Scholar
  72. Shall S, de Murcia G (2000) Poly(ADP-ribose) polymerase-1: what have we learned from the deficient mouse model? Mutat Res 460:1–15PubMedCrossRefGoogle Scholar
  73. Stetler RA, Gao YQ, Zukin RS, Vosler PS, Zhang LL, Zhang F, Cao GD, Bennett MVL, Chen J (2010) Apurinic/apyrimidinic endonuclease APE1 is required for PACAP-induced neuroprotection against global cerebral ischemia. Proc Natl Acad Sci U S A 107:3204–3209PubMedPubMedCentralCrossRefGoogle Scholar
  74. Strosznajder RP, Walski M (2004) Effects 3-aminobenzamide on ultrastructure of hippocampal CA1 layer after global ischemia in gerbils. J Physiol Pharmacol 55(Suppl 3):127–133PubMedGoogle Scholar
  75. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:Rc39PubMedCrossRefGoogle Scholar
  76. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prevost MC, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–580PubMedPubMedCentralCrossRefGoogle Scholar
  77. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446PubMedPubMedCentralCrossRefGoogle Scholar
  78. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (2001) X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 276:27058–27063PubMedCrossRefGoogle Scholar
  79. Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298PubMedPubMedCentralCrossRefGoogle Scholar
  80. Thiriet C, Hayes JJ (2005) Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18:617–622PubMedCrossRefGoogle Scholar
  81. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vahsen N, Cande C, Dupaigne P, Giordanetto F, Kroemer RT, Herker E, Scholz S, Modjtahedi N, Madeo F, Le Cam E, Kroemer G (2006) Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25:1763–1774PubMedCrossRefGoogle Scholar
  83. Van Loo G, Saelens X, Van Gurp M, Macfarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042PubMedCrossRefGoogle Scholar
  84. Vosler PS, Sun D, Wang S, Gao Y, Kintner DB, Signore AP, Cao G, Chen J (2009) Calcium dysregulation induces apoptosis-inducing factor release: cross-talk between PARP-1- and calpain-signaling pathways. Exp Neurol 218:213–220PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wang F, Dai AY, Tao K, Xiao Q, Huang ZL, Gao M, Li H, Wang X, Cao WX, Feng WL (2015) Heat shock protein-70 neutralizes apoptosis inducing factor in Bcr/Abl expressing cells. Cell Signal 27:1949–1955PubMedCrossRefGoogle Scholar
  86. Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H (1998) Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356:187–196PubMedCrossRefGoogle Scholar
  87. Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, Signore AP, Stetler RA, Gao Y, Chen J (2008) Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke 39:2587–2595PubMedPubMedCentralCrossRefGoogle Scholar
  88. Wang Y, Kim NS, Haince JF, Kang HC, David KK, Andrabi SA, Poirier GG, Dawson VL, Dawson TM (2011) Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal 4:ra20PubMedPubMedCentralGoogle Scholar
  89. Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y (2015) Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med 9:476–482PubMedCrossRefGoogle Scholar
  90. Wilkinson JC, Wilkinson AS, Galban S, Csomos RA, Duckett CS (2008) Apoptosis-inducing factor is a target for ubiquitination through interaction with XIAP. Mol Cell Biol 28:237–247PubMedCrossRefGoogle Scholar
  91. Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69PubMedPubMedCentralCrossRefGoogle Scholar
  92. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362PubMedPubMedCentralCrossRefGoogle Scholar
  93. Xue LX, Xu ZH, Wang JQ, Cui Y, Liu HY, Liang WZ, Ji QY, He JT, Shao YK, Mang J, Xu ZX (2016) Activin A/Smads signaling pathway negatively regulates Oxygen Glucose Deprivation-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells. Biochem Biophys Res Commun 480(3):355–361PubMedCrossRefGoogle Scholar
  94. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 18:179–187PubMedPubMedCentralCrossRefGoogle Scholar
  95. Yang Y, Fang SY, Jensen JP, Weissman AM, Ashwell JD (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877PubMedCrossRefGoogle Scholar
  96. Ye H, Cande C, Stephanou NC, Jiang SL, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H (2002) DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680–684PubMedCrossRefGoogle Scholar
  97. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103:18314–18319PubMedPubMedCentralCrossRefGoogle Scholar
  98. Yu SW, Wang HM, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yu SW, Wang Y, Frydenlund DS, Ottersen OP, Dawson VL, Dawson TM (2009) Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release. ASN Neuro 1:275–281CrossRefGoogle Scholar
  100. Zhang F, Chen J (2008) Leptin protects hippocampal CA1 neurons against ischemic injury. J Neurochem 107:578–587PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zhang F, Signore AP, Zhou Z, Wang S, Cao G, Chen J (2006) Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: potential signaling mechanisms. J Neurosci Res 83:1241–1251PubMedCrossRefGoogle Scholar
  102. Zhang F, Yin W, Chen J (2004) Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 26:835–845PubMedCrossRefGoogle Scholar
  103. Zhao Y, Huang G, Chen S, Gou Y, Dong Z, Zhang X (2016) Homocysteine aggravates cortical neural cell injury through neuronal autophagy overactivation following rat cerebral ischemia-reperfusion. Int J Mol Sci 17(8):1196PubMedCentralCrossRefPubMedGoogle Scholar
  104. Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, Neagu MR, Nilsson M, Eriksson PS, Hagberg H, Luban J, Kroemer G, Blomgren K (2007) Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 204(8):1741PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhu CL, Xu FL, Wang XY, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96:1016–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyPittsburgh Institute of Brain Disorders and Recovery, University of PittsburghPittsburghUSA

Personalised recommendations