Advertisement

Oxidative Damage Mechanisms in Traumatic Brain Injury and Antioxidant Neuroprotective Approaches

  • Edward D. Hall
  • Indrapal N. Singh
  • John E. Cebak
Chapter

Abstract

This chapter reviews our current knowledge of the role of oxidative damage mechanisms and pharmacological antioxidant neuroprotective strategies for inhibiting reactive oxygen species (ROS) and reactive nitrogen species (RNS)-mediated secondary injury following traumatic brain injury (TBI). First of all, the chemistry of the main forms of oxidative damage: lipid peroxidation, carbonylation and nitration are presented as well as the interactions of oxidative damage with other secondary injury mechanisms including glutamate-mediated excitotoxicity, intracellular calcium overload and mitochondrial dysfunction. Secondly, the general mechanistic approaches to interrupting oxidative damage are presented: decreasing ROS/RNS formation or scavenging ROS and RNS-derived radicals, inhibition of lipid peroxidation propagation, chelation of iron, which is a potent catalyst of lipid peroxidation reactions, scavenging of neurotoxic aldehydic lipid peroxidation products (‘carbonyls’), and enhancement of the expression of the pleiotopic Nrf2-antioxidant response element (ARE) pathway that controls the synthesis of several endogenous antioxidant enzymes and chemical antioxidants. Pharmacological examples of compounds that effectively inhibit oxidative damage and produce neuroprotective effects in animal TBI models by each of these various approaches are presented. Finally, the results of large phase III clinical trials with the either the radical scavenger polyethylene glycol-coupled superoxide dismutase (PEG-SOD) or the 21-aminosteroid lipid peroxidation inhibitor tirilazad are revisited in which the latter compound was found to selectively improve survival after moderate and severe TBI, particularly in male patients, suggesting that successful clinical translation of neuroprotective antioxidant compounds, or combinations of mechanistically complimentary antioxidants, should be possible.

Keywords

Glutamate excitotoxicity Calcium overload Reactive oxygen species Lipid peroxidation Antioxidant Neuroprotection Traumatic brain injury 

Notes

Acknowledgements

Portions of the work reviewed in this chapter were supported by funding from 5R01 NS046566, 5P30 NS051220, and 5P01 NS58484 and currently by 5R01 NS083405, 5R01 NS084857 and 1R01 NS100093 and from the Kentucky Spinal Cord & Head Injury Research Trust.

References

  1. Althaus JS, Oien TT, Fici GJ, Scherch HM, Sethy VH, VonVoigtlander PF (1994) Structure activity relationships of peroxynitrite scavengers an approach to nitric oxide neurotoxicity. Res Commun Chem Pathol Pharmacol 83(3):243–254PubMedGoogle Scholar
  2. Ates O, Cayli S, Altinoz E, Gurses I, Yucel N, Sener M, Kocak A, Yologlu S (2007) Neuroprotection by resveratrol against traumatic brain injury in rats. Mol Cell Biochem 294(1–2):137–144CrossRefPubMedGoogle Scholar
  3. Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA (1997) Oxidative stress following traumatic brain injury in rats. Surg Neurol 47(6):575–581CrossRefPubMedGoogle Scholar
  4. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta 1822(5):675–684CrossRefPubMedGoogle Scholar
  5. Beit-Yannai E, Zhang R, Trembovler V, Samuni A, Shohami E (1996) Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res 717(1–2):22–28CrossRefPubMedGoogle Scholar
  6. Beni SM, Kohen R, Reiter RJ, Tan DX, Shohami E (2004) Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J 18(1):149–151CrossRefPubMedGoogle Scholar
  7. Bonini MG, Mason RP, Augusto O (2002) The Mechanism by which 4-hydroxy-2,2,6,6-tetramethylpiperidene-1-oxyl (tempol) diverts peroxynitrite decomposition from nitrating to nitrosating species. Chem Res Toxicol 15(4):506–511CrossRefPubMedGoogle Scholar
  8. Bringold U, Ghafourifar P, Richter C (2000) Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Free Radic Biol Med 29(3–4):343–348CrossRefPubMedGoogle Scholar
  9. Carrico KM, Vaishnav R, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26(8):1369–1378CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carroll RT, Galatsis P, Borosky S, Kopec KK, Kumar V, Althaus JS, Hall ED (2000) 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol 13(4):294–300CrossRefPubMedGoogle Scholar
  11. Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED (2017) Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological protection. J Neurotrauma 34(7):1302–1317Google Scholar
  12. Chan PH, Epstein CJ, Li Y, Huang TT, Carlson E, Kinouchi H, Yang G, Kamii H, Mikawa S, Kondo T et al (1995) Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma 12(5):815–824CrossRefPubMedGoogle Scholar
  13. Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523CrossRefPubMedGoogle Scholar
  14. Chen Z, Park J, Butler B, Acosta G, Alvarez S, Zheng L, Tang J, McCain R, Zhang W, Ouyang Z, Cao P, Shi R (2016) Mitigation of sensory and motor deficits by acrolein scavenger phenelzine in a rat model of spinal cord contusive injury. J Neurochem 138(2):328–338CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cirak B, Rousan N, Kocak A, Palaoglu O, Palaoglu S, Kilic K (1999) Melatonin as a free radical scavenger in experimental head trauma. Pediatr Neurosurg 31(6):298–301CrossRefPubMedGoogle Scholar
  16. Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN (2009) Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett 460(2):103–107CrossRefPubMedPubMedCentralGoogle Scholar
  17. Deng-Bryant Y, Singh IN, Carrico KM, Hall ED (2008) Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab 28(6):1114–1126CrossRefPubMedGoogle Scholar
  18. Dimlich RV, Tornheim PA, Kindel RM, Hall ED, Braughler JM, McCall JM (1990) Effects of a 21-aminosteroid (U-74006F) on cerebral metabolites and edema after severe experimental head trauma. Adv Neurol 52:365–375PubMedGoogle Scholar
  19. Du L, Bayir H, Lai Y, Zhang X, Kochanek PM, Watkins SC, Graham SH, Clark RS (2004) Innate gender-based proclivity in response to cytotoxicity and programmed cell death pathway. J Biol Chem 279(37):38563–38570CrossRefPubMedGoogle Scholar
  20. Galvani S, Coatrieux C, Elbaz M, Grazide MH, Thiers JC, Parini A, Uchida K, Kamar N, Rostaing L, Baltas M, Salvayre R, Negre-Salvayre A (2008) Carbonyl scavenger and antiatherogenic effects of hydrazine derivatives. Free Radic Biol Med 45(10):1457–1467CrossRefPubMedGoogle Scholar
  21. Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33(8):2123–2136CrossRefPubMedGoogle Scholar
  22. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G (2009) Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 40(6):2241–2243CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41(12 Pt 2):1819–1828PubMedGoogle Scholar
  24. Hall E (1986) Beneficial effects of acute intravenous ibuprofen on neurological recovery of head injured mice: comparison of cyclooxygenase inhibition of thromboxane A2 synthetase or 5-lipoxygenase. CNS. Trauma 2:75–83Google Scholar
  25. Hall ED, Bosken JM (2009) Measurement of oxygen radicals and lipid peroxidation in neural tissues. Curr Protoc Neurosci Chapter 7:Unit 7 17. 11–51Google Scholar
  26. Hall ED, Yonkers PA, McCall JM, Braughler JM (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68(3):456–461CrossRefPubMedGoogle Scholar
  27. Hall ED, Yonkers PA, Horan KL, Braughler JM (1989) Correlation between attenuation of posttraumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U74006F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6(3):169–176CrossRefPubMedGoogle Scholar
  28. Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, Means ED, Scherch HM, Von Voigtlander PF, Lahti RA, Jacobsen EJ (1991) U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258(2):688–694PubMedGoogle Scholar
  29. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425–S442PubMedGoogle Scholar
  30. Hall ED, Andrus PK, Yonkers PA (1993) Brain hydroxyl radical generation in acute experimental head injury. J Neurochem 60(2):588–594CrossRefPubMedGoogle Scholar
  31. Hall ED, McCall JM, Means ED (1994) Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221–268CrossRefPubMedGoogle Scholar
  32. Hall ED, Andrus PK, Smith SL, Oostveen JA, Scherch HM, Lutzke BS, Raub TJ, Sawada GA, Palmer JR, Banitt LS, Tustin JM, Belonga KL, Ayer DE, Bundy GL (1995) Neuroprotective efficacy of microvascularly-localized versus brain-penetraiting antioxidants. Acta Neurochir (Suppl) 66:107–113Google Scholar
  33. Hall ED, Andrus PK, Smith SL, Fleck TJ, Scherch HM, Lutzke BS, Sawada GA, Althaus JS, Vonvoigtlander PF, Padbury GE, Larson PG, Palmer JR, Bundy GL (1997) Pyrrolopyrimidines: novel brain-penetrating antioxidants with neuroprotective activity in brain injury and ischemia models. J Pharmacol Exp Ther 281(2):895–904PubMedGoogle Scholar
  34. Hall ED, Kupina NC, Althaus JS (1999) Peroxynitrite scavengers for the acute treatment of traumatic brain injury. Ann N Y Acad Sci 890:462–468CrossRefPubMedGoogle Scholar
  35. Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7(1):51–61CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hall ED, Wang JA, Miller DM (2012) Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Exp Neurol 238(2):176–182CrossRefPubMedPubMedCentralGoogle Scholar
  37. Halliwell B, Gutteridge J (2008) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  38. Hamann K, Shi R (2009) Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury. J Neurochem 111(6):1348–1356CrossRefPubMedGoogle Scholar
  39. Hamann K, Nehrt G, Ouyang H, Duerstock B, Shi R (2008) Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord. J Neurochem 104(3):708–718PubMedGoogle Scholar
  40. Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25(3):663–669CrossRefPubMedGoogle Scholar
  41. Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40(3):501–506CrossRefPubMedGoogle Scholar
  42. Jin W, Kong J, Wang H, Wu J, Lu T, Jiang J, Ni H, Liang W (2011) Protective effect of tert-butylhydroquinone on cerebral inflammatory response following traumatic brain injury in mice. Injury 42(7):714–718CrossRefPubMedGoogle Scholar
  43. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84(2):221–228CrossRefPubMedGoogle Scholar
  44. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefPubMedGoogle Scholar
  45. Kontos HA (1989) Oxygen radicals in CNS damage. Chem Biol Interact 72(3):229–255CrossRefPubMedGoogle Scholar
  46. Kontos HA, Povlishock JT (1986) Oxygen radicals in brain injury. Cent Nerv Syst Trauma 3(4):257–263CrossRefPubMedGoogle Scholar
  47. Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64(5):803–807CrossRefPubMedGoogle Scholar
  48. Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K (2000) Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev 2:CD000565Google Scholar
  49. Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg 90(6):1018–1024CrossRefPubMedGoogle Scholar
  50. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17(10):871–890CrossRefPubMedGoogle Scholar
  51. Long DA, Ghosh K, Moore AN, Dixon CE, Dash PK (1996) Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 717(1–2):109–117CrossRefPubMedGoogle Scholar
  52. Longoni B, Salgo MG, Pryor WA, Marchiafava PL (1998) Effects of melatonin on lipid peroxidation induced by oxygen radicals. Life Sci 62(10):853–859CrossRefPubMedGoogle Scholar
  53. Mao L, Wang H, Qiao L, Wang X (2010) Disruption of Nrf2 enhances the upregulation of nuclear factor-kappaB activity, tumor necrosis factor-alpha, and matrix metalloproteinase-9 after spinal cord injury in mice. Mediat Inflamm 2010:238321CrossRefGoogle Scholar
  54. Mao L, Wang H, Wang X, Liao H, Zhao X (2011) Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury. J Surg Res 170(1):e105–e115CrossRefPubMedGoogle Scholar
  55. Marklund N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L (2001) Alpha-phenyl-tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochir 143(1):73–81CrossRefPubMedGoogle Scholar
  56. Marshall LF, Maas AI, Marshall SB, Bricolo A, Fearnside M, Iannotti F, Klauber MR, Lagarrigue J, Lobato R, Persson L, Pickard JD, Piek J, Servadei F, Wellis GN, Morris GF, Means ED, Musch B (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89(4):519–525CrossRefPubMedGoogle Scholar
  57. Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209(1):243–253CrossRefPubMedGoogle Scholar
  58. Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED (2009) Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab 29(1):87–97CrossRefPubMedGoogle Scholar
  59. McIntosh TK, Thomas M, Smith D, Banbury M (1992) The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9(1):33–46CrossRefPubMedGoogle Scholar
  60. Mesenge C, Margaill I, Verrecchia C, Allix M, Boulu RG, Plotkine M (1998) Protective effect of melatonin in a model of traumatic brain injury in mice. J Pineal Res 25(1):41–46CrossRefPubMedGoogle Scholar
  61. Mikawa S, Kinouchi H, Kamii H, Gobbel GT, Chen SF, Carlson E, Epstein CJ, Chan PH (1996) Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J Neurosurg 85(5):885–891CrossRefPubMedGoogle Scholar
  62. Miller DM, Singh IN, Wang JA, Hall ED (2013) Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radic Biol Med 57:1–9CrossRefPubMedGoogle Scholar
  63. Miller D, Wang J, Buchanan A, Hall E (2014) Temporal and spatial dynamics of Nrf2-ARE-mediated gene targets in cortex and hippocampus following controlled cortical impact traumatic brain injury in mice. J Neurotrauma 31:1194–1201CrossRefPubMedPubMedCentralGoogle Scholar
  64. Miller DM, Singh IN, Wang JA, Hall ED (2015) Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol 264:103–110CrossRefPubMedGoogle Scholar
  65. Monyer H, Hartley DM, Choi DW (1990) 21-Aminosteroids attenuate excitotoxic neuronal injury in cortical cell cultures. Neuron 5(2):121–126CrossRefPubMedGoogle Scholar
  66. Mori T, Kawamata T, Katayama Y, Maeda T, Aoyama N, Kikuchi T, Uwahodo Y (1998) Antioxidant, OPC-14117, attenuates edema formation, and subsequent tissue damage following cortical contusion in rats. Acta Neurochir Suppl (Wien) 71:120–122Google Scholar
  67. Muizelaar JP, Kupiec JW, Rapp LA (1995) PEG-SOD after head injury. J Neurosurg 83(5):942PubMedGoogle Scholar
  68. Mustafa AG, Singh IN, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114(1):271–280PubMedPubMedCentralGoogle Scholar
  69. Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117(3):579–588CrossRefPubMedPubMedCentralGoogle Scholar
  70. Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, Bullock MR, Choi SC, Clifton GL, Contant CF, Coplin WM, Dietrich WD, Ghajar J, Grady SM, Grossman RG, Hall ED, Heetderks W, Hovda DA, Jallo J, Katz RL, Knoller N, Kochanek PM, Maas AI, Majde J, Marion DW, Marmarou A, Marshall LF, McIntosh TK, Miller E, Mohberg N, Muizelaar JP, Pitts LH, Quinn P, Riesenfeld G, Robertson CS, Strauss KI, Teasdale G, Temkin N, Tuma R, Wade C, Walker MD, Weinrich M, Whyte J, Wilberger J, Young AB, Yurkewicz L (2002) Clinical trials in head injury. J Neurotrauma 19(5):503–557CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ozdemir D, Tugyan K, Uysal N, Sonmez U, Sonmez A, Acikgoz O, Ozdemir N, Duman M, Ozkan H (2005a) Protective effect of melatonin against head trauma-induced hippocampal damage and spatial memory deficits in immature rats. Neurosci Lett 385(3):234–239CrossRefPubMedGoogle Scholar
  72. Ozdemir D, Uysal N, Gonenc S, Acikgoz O, Sonmez A, Topcu A, Ozdemir N, Duman M, Semin I, Ozkan H (2005b) Effect of melatonin on brain oxidative damage induced by traumatic brain injury in immature rats. Physiol Res 54(6):631–637PubMedGoogle Scholar
  73. Panter SS, Braughler JM, Hall ED (1992) Dextran-coupled deferoxamine improves outcome in a murine model of head injury. J Neurotrauma 9:47–53CrossRefPubMedGoogle Scholar
  74. Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10(3):1035–1041CrossRefPubMedGoogle Scholar
  75. Readnower RD, Pandya JD, McEwen ML, Pauly JR, Springer JE, Sullivan PG (2011) Post-injury administration of the mitochondrial permeability transition pore inhibitor, NIM811, is neuroprotective and improves cognition after traumatic brain injury in rats. J Neurotrauma 28(9):1845–1853CrossRefPubMedPubMedCentralGoogle Scholar
  76. Rohn TT, Hinds TR, Vincenzi FF (1993) Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes. Biochem Pharmacol 46(3):525–534CrossRefPubMedGoogle Scholar
  77. Rohn TT, Hinds TR, Vincenzi FF (1996) Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger. Biochem Pharmacol 51(4):471–476CrossRefPubMedGoogle Scholar
  78. Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, Kitajima C, Cui J, Kamins J, Okamoto S, Izumi M, Shirasawa T, Lipton SA (2008) Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 104(4):1116–1131CrossRefPubMedGoogle Scholar
  79. Sharma S, Zhuang Y, Ying Z, Wu A, Gomez-Pinilla F (2009) Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 161(4):1037–1044CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406CrossRefPubMedGoogle Scholar
  81. Singh IN, Sullivan PG, Hall ED (2007) Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 85(10):2216–2223CrossRefPubMedGoogle Scholar
  82. Singh IN, Gilmer LK, Miller DM, Cebak JE, Wang JA, Hall ED (2013) Phenelzine mitochondrial functional preservation and neuroprotection after traumatic brain injury related to scavenging of the lipid peroxidation-derived aldehyde 4-hydroxy-2-nonenal. J Cereb Blood Flow Metab 33(4):593–599CrossRefPubMedPubMedCentralGoogle Scholar
  83. Smith SL, Hall ED (1998) Tirilazad widens the therapeutic window for riluzole-induced attenuation of progressive cortical degeneration in an infant rat model of the shaken baby syndrome. J Neurotrauma 15(9):707–719CrossRefPubMedGoogle Scholar
  84. Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood-brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11(4):393–404CrossRefPubMedGoogle Scholar
  85. Sonmez U, Sonmez A, Erbil G, Tekmen I, Baykara B (2007) Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neurosci Lett 420(2):133–137CrossRefPubMedGoogle Scholar
  86. Sullivan PG, Thompson MB, Scheff SW (1999) Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp Neurol 160(1):226–234CrossRefPubMedGoogle Scholar
  87. Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24(6):991–999CrossRefPubMedGoogle Scholar
  88. Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G (2009) The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res 43(7):658–667CrossRefPubMedGoogle Scholar
  89. Wang X, de Rivero Vaccari JP, Wang H, Diaz P, German R, Marcillo AE, Keane RW (2012) Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. J Neurotrauma 29(5):936–945CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G (2006) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 1122(1):184–190CrossRefPubMedGoogle Scholar
  91. Wood PL, Khan MA, Moskal JR (2008) Mechanism of action of the disease-modifying anti-arthritic thiol agents D-penicillamine and sodium aurothiomalate: restoration of cellular free thiols and sequestration of reactive aldehydes. Eur J Pharmacol 580(1–2):48–54CrossRefPubMedGoogle Scholar
  92. Wu A, Ying Z, Gomez-Pinilla F (2006) Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp Neurol 197(2):309–317CrossRefPubMedGoogle Scholar
  93. Xiong Y, Peterson PL, Muizelaar JP, Lee CP (1997) Amelioration of mitochondrial function by a novel antioxidant U-101033E following traumatic brain injury in rats. J Neurotrauma 14(12):907–917CrossRefPubMedGoogle Scholar
  94. Xiong Y, Peterson PL, Verweij BH, Vinas FC, Muizelaar JP, Lee CP (1998) Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma 15(7):531–544CrossRefPubMedGoogle Scholar
  95. Xiong Y, Shie FS, Zhang J, Lee CP, Ho YS (2005) Prevention of mitochondrial dysfunction in post-traumatic mouse brain by superoxide dismutase. J Neurochem 95(3):732–744CrossRefPubMedGoogle Scholar
  96. Yan W, Wang HD, Hu ZG, Wang QF, Yin HX (2008) Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 431(2):150–154CrossRefPubMedGoogle Scholar
  97. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789CrossRefPubMedGoogle Scholar
  98. Zhang JR, Scherch HM, Hall ED (1996) Direct measurement of lipid hydroperoxides in iron-dependent spinal neuronal injury. J Neurochem 66(1):355–361CrossRefPubMedGoogle Scholar
  99. Zhang R, Shohami E, Beit-Yannai E, Bass R, Trembovler V, Samuni A (1998) Mechanism of brain protection by nitroxide radicals in experimental model of closed-head injury. Free Radic Biol Med 24(2):332–340CrossRefPubMedGoogle Scholar
  100. Zhang H, Squadrito GL, Uppu R, Pryor WA (1999) Reaction of peroxynitrite with melatonin: a mechanistic study. Chem Res Toxicol 12(6):526–534CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edward D. Hall
    • 1
  • Indrapal N. Singh
    • 1
  • John E. Cebak
    • 2
  1. 1.Spinal Cord & Brain Injury Research Center (SCoBIRC) and Department of NeuroscienceUniversity of Kentucky Medical CenterLexingtonUSA
  2. 2.Lincoln Memorial University DeBusk College of Osteopathic MedicineHarrogateUSA

Personalised recommendations