Advertisement

Activation of Caspase-Independent Programmed Pathways in Seizure-Induced Neuronal Necrosis

  • Denson G. Fujikawa
Chapter

Abstract

Prolonged epileptic seizures, or status epilepticus (SE), produce morphologically necrotic neurons in many brain regions. In contrast to prior notions of cellular necrosis being a passive process of cell swelling and lysis, SE-induced necrotic neurons show internucleosomal DNA cleavage (DNA laddering), a programmed process requiring endonuclease activation. The underlying mechanisms are triggered by excessive activation of NMDA receptors by glutamate, which allows calcium influx through their receptor-operated cation channels (excitotoxicity). Calcium-dependent enzymes are activated, such as calpain I and neuronal nitric oxide synthase (nNOS), the latter of which, through production of reactive oxygen species (ROS), activates poly(ADP-ribose) polymerase-1 (PARP-1). Calpain I and PARP-1 activation in turn cause translocation of death-promoting mitochondrial proteins and lysosomal enzymes that degrade cytoplasmic proteins and nuclear chromatin, creating irreversible cellular damage. Another programmed necrotic cell death pathway, necroptosis, has been described in cell culture following caspase inhibition, and activation of this pathway has been described following cerebral ischemia and traumatic brain injury in vivo. However, whether this pathway interacts with the excitotoxic pathway, while likely, and the specific mechanisms by which this occurs, are at present unknown. Based upon our knowledge of excitotoxic mechanisms, neuroprotective strategies can be devised that could ameliorate neuronal necrosis from refractory SE in humans.

Keywords

Calpain I Excitotoxicity Glutamate Necroptosis Neuronal nitric oxide synthase (nNOS) Poly(ADP-ribose) polymerase-1 (PARP-1) Programmed pathways Status epilepticus 

References

  1. Andrabi SA, Kim S-W, Wang H, Koh DW, Sasaki M, Klaus JA, Otsuka T, Zhang Z, Koehler RC, Hurn PD, Poirier GG, Dawson VL, Dawson TM (2006) Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A 103:18308–18313CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araújo IM, Gil JM, Carreira BP, Mohapel P, Petersen A, Pinheiro PS, Soulet D, Bahr BA, Brundin P, Carvalho CM (2008) Calpain activation is involved in early caspase-independent neurodegeneration in the hippocampus following status epilepticus. J Neurochem 105(3):666–676. PubMed PMID: 18088374CrossRefPubMedGoogle Scholar
  3. Artal-Sanz M, Samara C, Syntichaki P, Tavernarakis N (2006) Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J Cell Biol 173(2):231–239. PubMed PMID: 16636145CrossRefPubMedPubMedCentralGoogle Scholar
  4. Auer RN, Kalimo H, Olsson Y, Siesjo BK (1985a) The temporal evolution of hypoglycemic brain damage. II. Light- and electron-microscopic findings in the hippocampal gyrus and subiculum of the rat. Acta Neuropathol (Berl) 67(1–2):25–36. PubMed PMID: 4024869CrossRefGoogle Scholar
  5. Auer RN, Kalimo H, Olsson Y, Siesjo BK (1985b) The temporal evolution of hypoglycemic brain damage. I. Light- and electron-microscopic findings in the rat cerebral cortex. Acta Neuropathol (Berl) 67(1–2):13–24. PubMed PMID: 4024866CrossRefGoogle Scholar
  6. Bizat N, Galas MC, Jacquard C, Boyer F, Hermel JM, Schiffmann SN, Hantraye P, Blum D, Brouillet E (2005) Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology 49(5):695–702. PubMed PMID: 15998526CrossRefPubMedGoogle Scholar
  7. Bleck TP (2005) Refractory status epilepticus. Curr Opin Crit Care 1:117–120CrossRefGoogle Scholar
  8. Borris DJ, Bertram EH, Kaipur J (2000) Ketamine controls prolonged status epilepticus. Epilepsy Res 42:117–122CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brown AW (1977) Structural abnormalities in neurones. J Clin Pathol 30(Suppl 11):155–169CrossRefGoogle Scholar
  10. Bruhn T, Cobo M, Berg M, Diemer NH (1992) Limbic seizure-induced changes in extracellular amino acid levels in the hippocampal formation: a microdialysis study of freely moving rats. Acta Neurol Scand 86:455–461CrossRefPubMedGoogle Scholar
  11. Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, Clark RS, Graham SH, Chen J (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27(35):9278–9293. PubMed PMID: 17728442CrossRefPubMedGoogle Scholar
  12. Cheung EC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC, Park DS, Bennett SA, Slack RS (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25(6):1324–1334. PubMed PMID: 15703386CrossRefPubMedGoogle Scholar
  13. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014CrossRefPubMedGoogle Scholar
  14. Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213CrossRefPubMedGoogle Scholar
  15. Clifford DB, Olney JW, Benz AM, Fuller TA, Zorumski CF (1990) Ketamine, phencyclidine, and MK-801 protect against kainic-acid-induced seizure-related brain damage. Epilepsia 31:382–390CrossRefPubMedGoogle Scholar
  16. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518. PubMed PMID: 16247498CrossRefPubMedGoogle Scholar
  17. Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19:4200–4210CrossRefPubMedGoogle Scholar
  18. Colicos MA, Dash PK (1996) Apoptotic morphology of dentate granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res 739:120–131CrossRefPubMedGoogle Scholar
  19. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711. PubMed PMID: 16408008CrossRefPubMedGoogle Scholar
  20. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4(5):313–321. https://doi.org/10.1038/nchembio.83. PubMed PMID: 18408713CrossRefPubMedPubMedCentralGoogle Scholar
  21. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669. PubMed PMID: 15530778CrossRefPubMedGoogle Scholar
  22. Evans MC, Griffiths T, Meldrum BS (1984) Kainic-acid seizures and the reversibility of calcium loading in vulnerable neurons in the hippocampus. Neuropathol Appl Neurobiol 10:285–302CrossRefPubMedGoogle Scholar
  23. Fariello RG, Golden GT, Smith GG, Reyes PF (1989) Potentiation of kainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist206-213. Epilepsy Res 3:206–213CrossRefPubMedGoogle Scholar
  24. Fix AS, Horn JW, Wightman KA et al (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): A light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 123:204–215CrossRefPubMedGoogle Scholar
  25. Fujikawa DG (1995) The neuroprotective effect of ketamine administered after status epilepticus onset. Epilepsia 36:186–195CrossRefPubMedGoogle Scholar
  26. Fujikawa DG (1996) The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 725:11–22CrossRefPubMedGoogle Scholar
  27. Fujikawa DG (2000) Confusion between neuronal apoptosis and activation of programmed cell death mechanisms in acute necrotic insults. Trends Neurosci 23:410–411CrossRefPubMedGoogle Scholar
  28. Fujikawa DG (2002) Apoptosis: ignoring morphology and focusing on biochemical mechanisms will not eliminate confusion. Trends Pharmacol Sci 23:309–310CrossRefPubMedGoogle Scholar
  29. Fujikawa DG (2005) Prolonged seizures and cellular injury: understanding the connection. Epilepsia 7:S3–S11Google Scholar
  30. Fujikawa DG (2006) Neuroprotective strategies in status epilepticus. In: Wasterlain CG, Treiman DM (eds) Status epilepticus: mechanisms and management. MIT Press, Cambridge, MA, pp 463–480Google Scholar
  31. Fujikawa DG (ed) (2010) Acute neuronal injury: the role of excitotoxic programmed cell death mechanisms. Springer, New York. 306 pGoogle Scholar
  32. Fujikawa DG, Daniels AH, Kim JS (1994) The competitive NMDA-receptor antagonist CGP 40116 protects against status epilepticus-induced neuronal damage. Epilepsy Res 17:207–219CrossRefPubMedGoogle Scholar
  33. Fujikawa DG, Shinmei SS, Cai B (1999) Lithium-pilocarpine-induced status epilepticus produces necrotic neurons with internucleosomal DNA fragmentation in adult rats. Eur J Neurosci 11:1605–1614CrossRefPubMedGoogle Scholar
  34. Fujikawa DG, Shinmei SS, Cai B (2000) Kainic acid-induced seizures produce necrotic, not apoptotic, neurons with internucleosomal DNA cleavage: implications for programmed cell death mechanisms. Neuroscience 98:41–53CrossRefPubMedGoogle Scholar
  35. Fujikawa DG, Ke X, Trinidad RB, Shinmei SS, Wu A (2002) Caspase-3 is not activated in seizure-induced neuronal necrosis with internucleosomal DNA cleavage. J Neurochem 83:229–240CrossRefPubMedGoogle Scholar
  36. Fujikawa DG, Shinmei SS, Zhao S, Aviles ER Jr (2007) Caspase-dependent programmed cell death pathways are not activated in generalized seizure-induced neuronal death. Brain Res 1135:206–218CrossRefPubMedGoogle Scholar
  37. Griffiths T, Evans M, Meldrum BS (1983) Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline or L-allylglycine. Neuroscience 10:385–395CrossRefPubMedGoogle Scholar
  38. Griffiths T, Evans MC, Meldrum BS (1984) Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus. Neuroscience 12:557–567CrossRefPubMedGoogle Scholar
  39. Henshall DC, Chen J, Simon RP (2000) Involvement of caspase-3-like protease in the mechanism of cell death following focally evoked limbic seizures. J Neurochem 74:1215–1223CrossRefPubMedGoogle Scholar
  40. Henshall DC, Bonislawski DP, Skradski SL, Araki T, Lan J-Q, Schindler CK, Meller R, Simon RP (2001a) Formation of the Apaf-1/cytochrome c complex precedes activation of caspase-9 during seizure-induced neuronal death. Cell Death Differ 8:1169–1181CrossRefPubMedGoogle Scholar
  41. Henshall DC, Bonislawski DP, Skradski SL, Lan J-Q, Meller R, Simon RP (2001b) Cleavage of Bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures. Neurobiol Dis 8:568–580CrossRefPubMedGoogle Scholar
  42. Heo K, Cho Y-J, Cho K-J, Kim H-W, Kim H-J, Shin HY, Lee BI, Kim GW (2006) Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett 398:195–200CrossRefPubMedGoogle Scholar
  43. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. https://doi.org/10.1038/82732. PubMed PMID: 11101870CrossRefPubMedGoogle Scholar
  44. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siejö BK (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab 20:1294–1300CrossRefPubMedGoogle Scholar
  45. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler V, Dikranian K, Tenkova TI, Stefovska V, Turksi L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74CrossRefPubMedGoogle Scholar
  46. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, Price MT, Stefovska V, Horster F, Tenkova T, Dikranian K, Olney JW (2000) Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287:1056–1060CrossRefPubMedGoogle Scholar
  47. Ishimaru MJ, Ikonomidou C, Tenkova TI, Der TC, Dikranian K, Sesma MA, Olney JW (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 408:461–476CrossRefPubMedGoogle Scholar
  48. Knoblach SM, Alroy DA, Nikolaeva M, Cernak I, Stoica BA, Faden AI (2004) Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. J Cereb Blood Flow Metab 24:1119–1132CrossRefPubMedGoogle Scholar
  49. Kondratyev A, Gale K (2000) Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus. Mol Brain Res 75:216–224CrossRefPubMedGoogle Scholar
  50. Lallement G, Carpentier P, Collet A, Pernot-Marino I, Baubichon D, Blanchet G (1991) Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 563(1–2):234–240. PubMed PMID: 1786536CrossRefPubMedGoogle Scholar
  51. Lehmann A, Hagberg H, Jacobson I, Hamberger A (1985) Effects of status epilepticus on extracellular amino acids in the hippocampus. Brain Res 359(1–2):147–151. PubMed PMID: 3000520CrossRefPubMedGoogle Scholar
  52. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489. PubMed PMID: 9390557CrossRefPubMedGoogle Scholar
  53. Li L, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99CrossRefPubMedGoogle Scholar
  54. Li T, Lu C, Xia Z, Xiao B, Luo Y (2006) Inhibition of caspase-8 attenuates neuronal death induced by limbic seizures in a cytochrome c-dependent and Smac/DIABLO-independent way. Brain Res 1098(1):204–211. PubMed PMID: 16774749CrossRefPubMedGoogle Scholar
  55. Liu CL, Siesjö BK, Hu BR (2004) Pathogenesis of hippocampal neuronal death after hypoxia-ischemia changes during brain development. Neuroscience 127:113–123CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miao W, Qu Z, Shi K, Zhang D, Zong Y, Zhang G, Zhang G, Hu S (2015) RIP3 S-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res 1627:165–176. https://doi.org/10.1016/j.brainres.2015.08.020. PubMed PMID: 26319693CrossRefPubMedGoogle Scholar
  57. Millan MH, Chapman AG, Meldrum BS (1993) Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res 14(2):139–148. PubMed PMID: 8095893CrossRefPubMedGoogle Scholar
  58. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844–4862. PubMed PMID: 17470554CrossRefPubMedPubMedCentralGoogle Scholar
  59. Narkilahti S, Pirtillä TJ, Lukasiuk K, Tuunanen J, Expression PA (2003) activation of caspase 3 following status epilepticus. Eur J Neurosci 18:1486–1496CrossRefPubMedGoogle Scholar
  60. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF (2004) Nuclear translocation of cytochrome c during apoptosis. J Biol Chem 279:24911–24914CrossRefPubMedGoogle Scholar
  61. Olney JW (1969) Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164:719–721CrossRefPubMedGoogle Scholar
  62. Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30(1):75–90. PubMed PMID: 5542543CrossRefPubMedGoogle Scholar
  63. Olney JW (1985) Excitatory transmitters and epilepsy-related brain damage. In: Smythies JR, Bradley RJ (eds) International review of neurobiology, vol 27. Academic, Orlando, pp 337–362Google Scholar
  64. Olney JW, Rhee V, Ho OL (1974) Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77(3):507–512. PubMed PMID: 4152936CrossRefPubMedGoogle Scholar
  65. Parrish J, Li L, Klotz K, Ledwich D, Wang X, Xue D (2001) Mitochondrial endonuclease G is important for apoptosis in C elegans. Nature 412:90–94CrossRefPubMedGoogle Scholar
  66. Rink A, Fung KM, Trojanowski JQ, Lee VM-Y, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147:1575–1583PubMedPubMedCentralGoogle Scholar
  67. Rozman-Pungerčar J, Kopitar-Jerala N, Bogyo M, Turk D, Vasiljeva O, Štefe I, Vandenabeele P, Brőmme D, Pulzdar V, Fonović M, Trstenjak-Prebanda M, Dolenc I, Turk V, Turk B (2003) Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10(8):881CrossRefPubMedGoogle Scholar
  68. Sakhi S, Bruce A, Sun N, Tocco G, Baudry M, Schreiber SS (1994) p53 induction is associated with neuronal damage in the central nervous system. Proc Natl Acad Sci U S A 91:7525–7529CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schreiber SS, Tocco G, Najm I, Thompson RF, Baudry M (1993) Cycloheximide prevents kainate-induced neuronal death and c-fos expression in adult rat brain. J Mol Neurosci 4:149–159CrossRefPubMedGoogle Scholar
  70. Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett 414(1):57–60. PubMed PMID: 17223264CrossRefPubMedGoogle Scholar
  71. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995. PubMed PMID: 15528435CrossRefPubMedPubMedCentralGoogle Scholar
  72. Smolders I, Van Belle K, Ebinger G, Michotte Y (1997) Hippocampal and cerebellar extracellular amino acids during pilocarpine-induced seizures in freely moving rats. Eur J Pharmacol 319(1):21–29. PubMed PMID: 9030893CrossRefPubMedGoogle Scholar
  73. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. https://doi.org/10.1016/j.cell.2011.11.031. PubMed PMID: 22265413CrossRefPubMedGoogle Scholar
  74. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446CrossRefPubMedGoogle Scholar
  75. Syntichaki P, Xu K, Driscoll M, Tavernarakis N (2002) Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419:939–944CrossRefPubMedGoogle Scholar
  76. Syntichaki P, Samara C, Tavernarakis N (2005) The vacuolar H+-ATPase mediates intracellular acidification required for neurodegeneration in C. elegans. Curr Biol 15:1249–1254CrossRefPubMedGoogle Scholar
  77. Takano J, Tomioka M, Tsubuki S, Higuchi M, Nobuhisa Iwata N, Itohara S, Maki M, Saido TC (2005) Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice. J Biol Chem 280:16175–16184CrossRefPubMedGoogle Scholar
  78. Tanaka K, Graham SH, Simon RP (1996) The role of excitatory neurotransmitters in seizure-induced neuronal injury in rats. Brain Res 737(1–2):59–63. PubMed PMID: 8930350CrossRefPubMedGoogle Scholar
  79. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534. PubMed PMID: 16247500CrossRefPubMedGoogle Scholar
  80. Tsukada T, Watanabe M, Yamashima T (2001) Implications of CAD and DNase II in ischemic neuronal necrosis specific for the primate hippocampus. J Neurochem 79:1196–1206CrossRefPubMedGoogle Scholar
  81. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188(5):919–930. PubMed PMID: 9730893; PMCID: PMC2213397CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wade JV, Samson FE, Nelson SR, Pazdernik TL (1987) Changes in extracellular amino acids during soman- and kainic acid-induced seizures. J Neurochem 49(2):645–650. PubMed PMID: 3598590CrossRefPubMedGoogle Scholar
  83. Wang SJ, Wang SH, Song ZF, Liu XW, Wang R, Chi ZF (2007) Poly(ADP-ribose) polymerase inhibitor is neuroprotective in epileptic rat via apoptosis-inducing factor and Akt signaling. Neuroreport 18(12):1285–1289. PubMed PMID: 17632284CrossRefPubMedGoogle Scholar
  84. Wang S, Wang S, Shan P, Song Z, Dai T, Wang R, Chi Z (2008) mu-Calpain mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Brain Res Bull 76:90–96CrossRefPubMedGoogle Scholar
  85. Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA (2008) Acute plasmalemmal permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:490–505CrossRefPubMedGoogle Scholar
  86. Windelborn JA, Lipton P (2008) Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem 106:56–69. PubMed PMID: 18363826CrossRefPubMedGoogle Scholar
  87. Wu Y, Dong M, Toepfer NJ, Fan Y, Xu M, Zhang J (2004) Role of endonuclease G in neuronal excitotoxicity in mice. Neurosci Lett 264:203–207CrossRefGoogle Scholar
  88. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6:29362. https://doi.org/10.1038/srep29362. PubMed PMID: 27377128; PMCID: PMC4932529CrossRefPubMedPubMedCentralGoogle Scholar
  89. Yamashima T, Saido TC, Takita M, Miyazawa A, Yamano J, Miyakawa A, Nishiyo H, Yamashima J, Kawashima S, Ono T, Yoshioka T (1996) Transient brain ischemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci 8:1932–1944CrossRefPubMedGoogle Scholar
  90. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T, Kominami E (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis’. Eur J Neurosci 10:1723–1733. PubMed PMID: 9751144CrossRefPubMedGoogle Scholar
  91. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71. https://doi.org/10.1016/j.brainres.2015.03.024. PubMed PMID: 25801119CrossRefPubMedGoogle Scholar
  92. Yoon S, Bogdanov K, Kovalenko A, Wallach D (2016) Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ 23(2):253–260. https://doi.org/10.1038/cdd.2015.92.. PubMed PMID: 26184911; PMCID: PMC4716306CrossRefPubMedGoogle Scholar
  93. Yu S-W, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263CrossRefPubMedGoogle Scholar
  94. Yu S-W, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci U S A 103:18314–18319CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336. PubMed PMID: 19498109CrossRefPubMedGoogle Scholar
  96. Zhao S, Aviles ER Jr, Fujikawa DG (2010) Nuclear translocation of mitochondrial cytochrome c, lysosomal cathepsins B and D, and three other death-promoting proteins within the first 60 minutes of generalized seizures. J Neurosci Res 88(8):1727–1737. PubMedPMID: 20077427PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyVA Greater Los Angeles Healthcare SystemNorth HillsUSA
  2. 2.Department of Neurology and Brain Research Institute, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations