Advertisement

The Use of Writing as a Metacognitive Tool in Geometry Learning

  • Luz Graciela Orozco VacaEmail author
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

This work reports on a teaching intervention that explored the use of writing as a metacognitive tool in high school geometry problem solving. Specifically, this qualitative research study investigated how explicit writing directives can help students understand, organize, and monitor the steps involved in the different phases of activities for geometry problem solving in the third year of secondary school. Possible gains of the intervention are assessed by comparing the performance of students who participated of the intervention with that of students who did not.

Keywords

Geometry Learning Metacognition Metacognitive tool Writing 

References

  1. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.CrossRefGoogle Scholar
  2. Henning, E., Gravett, S., & van Resburg, W. (2002). Finding your way in academic writing. Cape Town: Van Schaick Publishers.Google Scholar
  3. Hyde, A. A. (2006). Comprehending math adapting reading strategies to teach mathematics, K-6. Portsmouth, NH: Heinemann.Google Scholar
  4. Hyde, A., & Hyde, P. (1991). Mathwise: Teaching mathematical thinking and problem solving. Portsmouth, NH: Heinemann.Google Scholar
  5. Secretaría de Educación Pública. (2013a). Invitación a las Olimpiada Estatal de Educación Primaria y Secundaria [Invitation to the State Olympics for Elementary and Secondary Education]. Available at: http://portalsej.jalisco.gob.mx/sites/default/files/cuadernillo_secundaria_2013.pdf.
  6. Secretaría de Educación Pública. (2013b). Invitación a las Olimpiada Estatal de Educación Primaria y Secundaria [Invitation to the State Olympics for Elementary and Secondary Education]. Available at: http://portalsej.jalisco.gob.mx/cuarta-olimpiada-estatal-de-matematicas-en-educacion-primaria-y-secundaria.
  7. Schoenfeld, A. H. (1985). Metacognitive and epistemological issues in mathematical understanding. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 361–379). Hillsdale, NJ: Erlbaum.Google Scholar
  8. Veenman, M. V. J. (2005). The assessment of metacognitive skills: What can be learned from multi-method designs? In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis (pp. 75–97). Berlin: Waxmann.Google Scholar
  9. Veenman, M. V. J. (2006). Self-questioning as a metacognitive skill. In H. Pedrosa de Jesus & H. van der Meij (Eds.), Research on Questioning. Aveiro: University of Aveiro.Google Scholar
  10. Veenman, M. V. J. (2007). The assessment and instruction of self-regulation in computer-based environments: A discussion. Metacognition and Learning, 2, 177–183.CrossRefGoogle Scholar
  11. Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (pp. 197–218). New York: Routledge.Google Scholar
  12. Veenman, M. V. J. (2012). Metacognition in science education: Definitions, constituents, and their intricate relation with cognition. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research. Contemporary Trends and Issues in Science Education (Vol. 40, pp. 21–36).  https://doi.org/10.1007/978-94-007-2132-6_2.Google Scholar
  13. Veenman, M. V. J., Bernadette, H. A. M., Hout-Wolters, V., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition Learning, 1, 3–14.  https://doi.org/10.1007/s11409-006-6893-0.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DME, CINVESTAVMexico CityMexico

Personalised recommendations