Genetics of Congenital Heart Disease

  • Sahar MansourEmail author


Congenital heart disease (CHD) is the most common congenital malformation accounting for one-third of all congenital abnormalities with an incidence of 7–10 per 1000 live births. Congenital heart disease may be associated with chromosomal aneuploidy and single gene disorders. However, an underlying chromosomal or genetic abnormality is found in less than 20% of patients with CHD. However, there is probably a genetic contribution to CHD even it has not been identified. The genetics of congenital heart disease is highly complex. Mutations in different genes can cause an identical malformation, whilst identical mutations in the same gene can result in a spectrum of cardiac malformations. Environmental factors play a major role in the development of cardiac malformations.


Genetics Congenital heart disease Recurrence risk Non-invasive Prenatal Testing Array CGH Syndrome Tuberous sclerosis 

Supplementary material

Video 15.1

Four chamber view of a fetus with non-compaction of the myocardium. The apices of both left and right ventricles are abnormally trabeculated with deep recesses (crypts) (MP4 3741 kb)

Video 15.2

Four chamber view of a fetus with non-compaction of the myocardium with the addition of colour flow Doppler to demonstrate the deep crypts within the myocardium of the left and right ventricles which are pathognomonic of this condition (MP4 2758 kb)

Video 15.3

This video shows a large cystic teratoma in association with fetal hydrops (WMV 612 kb)

Video 15.4

This fetus has a large teratoma with typical non-uniform echogenicity. It may be impossible to visualise the point of attachment of the teratoma to the heart or outflow tracts. Most are attached to the aorta (WMV 941 kb)

Video 15.5

This video shows the echogenicity of both the descending aorta and of the right pulmonary artery (AVI 34606 kb)


  1. Benson DW, Martin LJ, Lo CW. Genetics of hypoplastic left heart syndrome. J Pediatr. 2016;173:25–31.CrossRefGoogle Scholar
  2. Brodwall K, Greve G, Leirgul E, Tell GS, Vollset SE, Øyen N. Recurrence of congenital heart defects among siblings—a nationwide study. Am J Med Genet. 2017;173(6):1575–85.CrossRefGoogle Scholar
  3. Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE, Godman M, Houston A, Keeton B, Oakley C, Scott O, Silove E, Wilkinson J, Pembrey M, Hunter AS. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet. 1998;351(9099):311–6.CrossRefGoogle Scholar
  4. Costain G, Silversides CK, Bassett AS. The importance of copy number variation in congenital heart disease. NPJ Genom Med. 2016;1:16031.CrossRefGoogle Scholar
  5. Digilio MC, Casey B, Toscano A, Calabrò R, Pacileo G, Marasini M, Banaudi E, Giannotti A, Dallapiccola B, Marino B. Complete transposition of the great arteries: patterns of congenital heart disease in familial precurrence. Circulation. 2001;104(23):2809–14.CrossRefGoogle Scholar
  6. Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235–41.CrossRefGoogle Scholar
  7. Emanuel BS, Budarf ML, Sellinger B, Goldmuntz E, Driscoll DA. Detection of microdeletions of 22q11.2 with fluorescence in situ hybridization (FISH): diagnosis of DiGeorge syndrome (DGS), velo-cardio-facial (VCF) syndrome, CHARGE association and conotruncal cardiac malformations. (Abstract). Am J Hum Genet. 1992;51(suppl):A3.Google Scholar
  8. Ferencz C, Rubin JD, Loffredo CA, Magee CA. Epidemiology of congenital heart disease: the Baltimore-Washington Infant Study, 1981–1989. New York: Futura Publishing Company; 1993.Google Scholar
  9. Ferreira C, Ziegler S, Gahl W. Generalized Arterial Calcification of Infancy. 2014. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017.
  10. Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns. 2016;25(6):1171–8.CrossRefGoogle Scholar
  11. Gelb BD, Chung WK. Complex genetics and the etiology of human congenital heart disease. Cold Spring Harb Perspect Med. 2014;4(7):a013953.CrossRefGoogle Scholar
  12. Hales AR, Mahle WT. Echocardiography screening of siblings of children with bicuspid aortic valve. Pediatrics. 2014;133(5):e1212–7.CrossRefGoogle Scholar
  13. Hinton RB Jr, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50:1590–5.CrossRefGoogle Scholar
  14. Isaacs H. Fetal and neonatal cardiac tumors. Pediatr Cardiol. 2004;25(3):252–73.CrossRefGoogle Scholar
  15. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, Klein Wassink-Ruiter JS, van der Zwaag PA, du Marchie Sarvaas GJ, Bergman KA, Bilardo CM, Roos-Hesselink JW, Janssen JH, Frohn-Mulder IM, van Spaendonck-Zwarts KY, van Melle JP, Hofstra RM, Wessels MW. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914–23.CrossRefGoogle Scholar
  16. Maslen CL. Molecular genetics of atrioventricular septal defects. Curr Opin Cardiol. 2004;19(3):205–10.CrossRefGoogle Scholar
  17. McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, Lam W, Leal SM, Kaplan N, Schliekelman P, Towbin JA, Belmont JW. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6.CrossRefGoogle Scholar
  18. Moosmann J, Uebe S, Dittrich S, Rüffer A, Ekici AB, Toka O. Novel loci for non-syndromic coarctation of the aorta in sporadic and familial cases. PLoS One. 2015;10(5):e0126873.CrossRefGoogle Scholar
  19. Muntean I, Togănel R, Benedek T. Genetics of congenital heart disease: past and present. Biochem Genet. 2017;55(2):105–23.CrossRefGoogle Scholar
  20. Oliverio M, Digilio MC, Versacci P, Dallapiccola B, Marino B. Shells and heart: are human laterality and chirality of snails controlled by the same maternal genes? Am J Med Genet A. 2010;152A(10):2419–25.CrossRefGoogle Scholar
  21. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120(4):295–301.CrossRefGoogle Scholar
  22. Pedra SR, Smallhorn JF, Ryan G, Chitayat D, Taylor GP, Khan R, Abdolell M, Hornberger LK. Fetal cardiomyopathies: pathogenic mechanisms, hemodynamic findings, and clinical outcome. Circulation. 2002;106(5):585–91.CrossRefGoogle Scholar
  23. Barnes RM, Brian L, Black T. Nodal signaling and congenital heart defects. In: Nakanishi T, et al., editors. Etiology and morphogenesis of congenital heart disease. Tokyo, Japan: Springer; 2016.Google Scholar
  24. Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, Hoyer J, Kaulitz R, Singer H, Rauch A. Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet. 2010;47(5):321–31.CrossRefGoogle Scholar
  25. Seale AN, Uemura H, Webber SA, Partridge J, Roughton M, Ho SY, McCarthy KP, Jones S, Shaughnessy L, Sunnegardh J, Hanseus K, Berggren H, Johansson S, Rigby ML, Keeton BR, Daubeney PE, British Congenital Cardiac Association. Total anomalous pulmonary venous connection: morphology and outcome from an international population-based study. Circulation. 2010;122(25):2718–26.CrossRefGoogle Scholar
  26. Seale AN, Carvalho JS, Gardiner HM, Mellander M, Roughton M, Simpson J, Tometzki A, Uzun O, Webber SA, Daubeney PE, British Congenital Cardiac Association. Total anomalous pulmonary venous connection: impact of prenatal diagnosis. Ultrasound Obstet Gynecol. 2012;40(3):310–8.CrossRefGoogle Scholar
  27. Sivasankaran S, Sharland GK, Simpson JM. Dilated cardiomyopathy presenting during fetal life. Cardiol Young. 2005;15(4):409–16.CrossRefGoogle Scholar
  28. Soemedi R, Wilson IJ, Bentham J, Darlay R, Töpf A, Zelenika D, Cosgrove C, Setchfield K, Thornborough C, Granados-Riveron J, Blue GM, Breckpot J, Hellens S, Zwolinkski S, Glen E, Mamasoula C, Rahman TJ, Hall D, Rauch A, Devriendt K, Gewillig M, O’Sullivan J, Winlaw DS, Bu'Lock F, Brook JD, Bhattacharya S, Lathrop M, Santibanez-Koref M, Cordell HJ, Goodship JA, Keavney BD. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet. 2012;91(3):489–501.CrossRefGoogle Scholar
  29. Su W, Zhu P, Wang R, Wu Q, Wang M, Zhang X, Mei L, Tang J, Kumar M, Wang X, Su L, Dong N. Congenital heart diseases and their association with the variant distribution features on susceptibility genes. Clin Genet. 2017;91(3):349–54.CrossRefGoogle Scholar
  30. Sutherland MJ, Ware SM. Disorders of left-right asymmetry: heterotaxy and situs inversus. Am J Med Genet C Semin Med Genet. 2009;151C(4):307–17.CrossRefGoogle Scholar
  31. Unolt M, Putotto C, Silvestri LM, Marino D, Scarabotti A, Massaccesi V, Caiaro A, Versacci P, Marino B. Transposition of great arteries: new insights into the pathogenesis. Front Pediatr. 2013;1:11.CrossRefGoogle Scholar
  32. Wacker-Gussmann A, Strasburger JF, Cuneo BF, Wakai RT. Diagnosis and treatment of fetal arrhythmia. Am J Perinatol. 2014;31(7):617–28.CrossRefGoogle Scholar
  33. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, Savage M, Platt LD, Saltzman D, Grobman WA, Klugman S, Scholl T, Simpson JL, McCall K, Aggarwal VS, Bunke B, Nahum O, Patel A, Lamb AN, Thom EA, Beaudet AL, Ledbetter DH, Shaffer LG, Jackson L. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175–84.CrossRefGoogle Scholar
  34. Weber R, Kantor P, Chitayat D, Friedberg MK, Golding F, Mertens L, Nield LE, Ryan G, Seed M, Yoo SJ, Manlhiot C, Jaeggi E. Spectrum and outcome of primary cardiomyopathies diagnosed during fetal life. JACC Heart Fail. 2014;2(4):403–11.CrossRefGoogle Scholar
  35. Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res. 2017;120(6):923–40.CrossRefGoogle Scholar
  36. Zhang Y, Ai F, Zheng J, Peng B. Associations of GATA4 genetic mutations with the risk of congenital heart disease: A meta-analysis. Medicine (Baltimore). 2017;96(18):e6857.CrossRefGoogle Scholar

Useful Websites

  1. The Unique rare chromosomal disorders support group provide a number of helpful, informative and accurate leaflets.
  2. FutureLearn run a MOOC (Massive Online Open Course) on ‘The Genomics Era: The future of genetics in medicine.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St George’s University Hospitals NHS Foundation TrustLondonUK

Personalised recommendations