How Perturbation Strength Shapes the Global Structure of TSP Fitness Landscapes

  • Paul McMenemy
  • Nadarajen Veerapen
  • Gabriela Ochoa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10782)

Abstract

Local optima networks are a valuable tool used to analyse and visualise the global structure of combinatorial search spaces; in particular, the existence and distribution of multiple funnels in the landscape. We extract and analyse the networks induced by Chained-LK, a powerful iterated local search for the TSP, on a large set of randomly generated (Uniform and Clustered) instances. Results indicate that increasing the perturbation strength employed by Chained-LK modifies the landscape’s global structure, with the effect being markedly different for the two classes of instances. Our quantitative analysis shows that several funnel metrics have stronger correlations with Chained-LK success rate than the number of local optima, indicating that global structure clearly impacts search performance.

Keywords

Local optima network Travelling salesman problem Chained-LK Perturbation strength Combinatorial fitness landscape 

Notes

Acknowledgements

This work was supported by the Leverhulme Trust [award number RPG-2015-395] and by the UK’s Engineering and Physical Sciences Research Council [grant number EP/J017515/1]. Results were obtained using the EPSRC-funded ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk, EPSRC grant EP/K000586/1).

Data Access. All data generated for this research are openly available from the Stirling Online Repository for Research Data (http://hdl.handle.net/11667/104).

References

  1. 1.
    Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO), pp. 555–562. ACM (2008)Google Scholar
  2. 2.
    Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)CrossRefGoogle Scholar
  3. 3.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  4. 4.
    Ochoa, G., Veerapen, N.: Mapping the global structure of tsp fitness landscapes. J. Heuristics 1–30 (2017).  https://doi.org/10.1007/s10732-017-9334-0. ISSN 15729397
  5. 5.
    Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30698-8_5CrossRefGoogle Scholar
  6. 6.
    Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)CrossRefGoogle Scholar
  7. 7.
    Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)Google Scholar
  10. 10.
    Herrmann, S., Herrmann, M., Ochoa, G., Rothlauf, F.: Shaping communities of local optima by perturbation strength. In: Genetic and Evolutionary Computation Conference, GECCO, pp. 266–273 (2017)Google Scholar
  11. 11.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stadler, P.F.: Fitness landscapes. Appl. Math. Comput. 117, 187–207 (2002)MathSciNetGoogle Scholar
  13. 13.
    Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN XIV. LNCS, vol. 9921, pp. 994–1003. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45823-6_93CrossRefGoogle Scholar
  14. 14.
    Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-55453-2_16CrossRefGoogle Scholar
  15. 15.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)MATHGoogle Scholar
  16. 16.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003). http://www.math.uwaterloo.ca/tsp/concorde.html
  17. 17.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computing Science and MathematicsUniversity of StirlingStirlingUK

Personalised recommendations