Bioremediation of Insecticides by White-Rot Fungi and Its Environmental Relevance

Part of the Fungal Biology book series (FUNGBIO)


The use of insecticides in the last decades has led to serious environmental pollution and residual toxicity to soil organisms. These insecticides are persistent in the environment and have potential toxic effects. Removing these organopollutants from soil in an ecologically responsible, safe and cost-effective way is a top concern. Among various methods available, bioremediation using microorganisms is a potential approach. Ligninolytic, white-rot fungi (WRF) produce extracellular enzyme with low substrate specificity, which makes them suitable candidates for degradation of different compounds notably organopollutants. Keeping this in context, the following work attempts to present an overview of different WRF being used in degradation of insecticides, their enzyme systems responsible for degradation and pathways of degradation. The common microbes used for the study are bacteria and many strains are recommended for the application but degradation ability of fungi is not given proper attention. Several WRF belonging to basidiomycetes and some to ascomycetes have been found with ability to degrade insecticides and herbicides. The ability to form spore during unfavourable condition makes them a better organism as compared to bacteria as they are more persistent. This article mainly focuses on the use of white-rot fungi for biodegradation of insecticides.


Agriculture Biodegradation Pesticides Insecticides White-rot fungi 


  1. Ang EL, Zhao HM, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microb Technol 37:487–496CrossRefGoogle Scholar
  2. Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arisoy M (1988) Biodegradation of chlorinated organic compounds by white rot fungi. Bull Environ Contam Toxicol 60(6):872–876Google Scholar
  4. Asgher M, Bhati HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783PubMedCrossRefGoogle Scholar
  5. Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AA (2013) Characterization and kinetic properties of the purified Trematosphaeria mangrovei laccase enzyme. Saudi J Biol Sci 20:373–381PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ Health Perspect 103(Suppl 5):59–61PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baarschers WH, Heitland HS (1986) Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. J Agric Food Chem 34:707–709CrossRefGoogle Scholar
  8. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balba M, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164CrossRefGoogle Scholar
  10. Barkova K, Kinne M, Ullrich R, Hennig L, Fuchs A, Hofrichter M (2011) Regioselective hydroxylation of diverse flavonoids by an aromatic peroxygenase. Tetrahedron 67:4874–4878CrossRefGoogle Scholar
  11. Barr D, Aust S (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78–87CrossRefGoogle Scholar
  12. Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegradation 63(4):389–394CrossRefGoogle Scholar
  13. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphorus nerve agents. Biochemistry 33:15001–15007PubMedCrossRefGoogle Scholar
  15. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559PubMedPubMedCentralGoogle Scholar
  16. Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683PubMedCrossRefGoogle Scholar
  17. Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635PubMedPubMedCentralGoogle Scholar
  18. Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603PubMedPubMedCentralGoogle Scholar
  19. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158PubMedPubMedCentralGoogle Scholar
  20. Bumpus JA, Aust SD (1987) Biodegradation of DDT (1,1,1- trichloro-2,2-bis-(4- chlorophenyl) ethane) by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008PubMedPubMedCentralGoogle Scholar
  21. Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorous insecticides. Appl Biochem Biotechnol 39(1):715–726PubMedCrossRefGoogle Scholar
  22. Buswell JA, Mollet B, Odier E (1984) Ligninolytic enzyme production by Phanerochaete chrysosporium under conditions of nutrient sufficiency. FEMS Microbiol Lett 25:295–299CrossRefGoogle Scholar
  23. Canet R, Birnstingl J, Malcolm D, Lopez-Real J, Beck A (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117PubMedCrossRefGoogle Scholar
  24. Chandrakala Y, Mohapatra PK (2012) Tolerance of Anabaena sp. PCC7119 to cypermethrin measured through photosynthetic pigment fluorescence. Plant Sci Res 34:47–53Google Scholar
  25. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7(10):e47205PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chrinside AE, Ritter WF, Radosevich M (2011) Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl Environ Soil Sci 2011:1–10CrossRefGoogle Scholar
  27. Chu WK, Wong MH, Zhang J (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.:II. Enzyme study. Environ Geochem Health 28(1–2):169–181PubMedCrossRefGoogle Scholar
  28. Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567PubMedPubMedCentralGoogle Scholar
  29. Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic–aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull Environ Contam Toxicol 63(2):219–225PubMedCrossRefGoogle Scholar
  30. Cycon M, Wojcik M, Borymski S, Piotrowska-seget Z (2012) A broad spectrum analysis of the effects of teflubenzuron exposure on the biochemical activities and microbial community structure of soil. J Environ Manag 108:27–35CrossRefGoogle Scholar
  31. Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegradation 117:183–189CrossRefGoogle Scholar
  32. Dehghanifard E, Jonidi Jafari A, Rezaei Kalantary R, Mahvi AH, Faramarzi MA, Esrafili A (2013) Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian J Environ Health Sci Eng 10:1–9CrossRefGoogle Scholar
  33. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264PubMedPubMedCentralCrossRefGoogle Scholar
  34. Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Biotechnol 24:961–968CrossRefGoogle Scholar
  35. Dritsa V, Rigas F, Doulia D, Avramides EJ, Hatzianestis I (2009) Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Water Air Soil Pollut 204(1):19–27CrossRefGoogle Scholar
  36. Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158PubMedPubMedCentralGoogle Scholar
  37. Eizuka T, Ito A, Chida T (2003) Degradation of ipconazole by microorganisms isolated from paddy soil. J Pest Sci 28(2):200–207CrossRefGoogle Scholar
  38. Escobar VM (2002) Effect of endosulfan on mycellial growth of Pleurotus ostreatus and Auricularia fuscosuccinea in liquid culture. Mushroom Biol Mushroom Prod. 399–408Google Scholar
  39. Fan B, Zhao Y, Mo G, Ma W, Wu J (2013) Co-remediation of DDT-contaminated soil using white rot fungi and laccase extract from white rot fungi. J Soils Sediments 13(7):1232–1245CrossRefGoogle Scholar
  40. Field JA, De Jong E, Costa GF, De Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white-rot fungi. Appl Environ Microbiol 58:2219–2226PubMedPubMedCentralGoogle Scholar
  41. Fragoeiro S, Magan N (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 7:348–355PubMedCrossRefGoogle Scholar
  42. Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegradation 62:376–383CrossRefGoogle Scholar
  43. Fulekar MH (2012) Bioremediation technology: recent advances. Springer Publishers, The Netherlands, pp 147–150Google Scholar
  44. Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. Wiley, Chichester, pp 59–84Google Scholar
  45. Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 7(6):e38137PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073PubMedPubMedCentralCrossRefGoogle Scholar
  47. Guenther T, Sack U, Hofrichter M, Laetz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122CrossRefGoogle Scholar
  48. Hadibarata T, Zubir MM, Rubiyabto TZ, Chuang TZ, Yusoff AR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391CrossRefGoogle Scholar
  49. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952PubMedGoogle Scholar
  50. Helal IM, Abo-El-Seoud MA (2015) Fungal biodegradation of pesticide vydate in soil and aquatic system. In: 4th international conference on radiation sciences and applications, pp 13–17Google Scholar
  51. Hernandez J, Robledo NR, Velasco L, Quintero R, Pickard MA, Vazquez-Duhalt R (1998) Chloroperoxidaes-mediated oxidation of organophosphorus pesticides. Pestic Biochem Physiol 61:87–94CrossRefGoogle Scholar
  52. Hernández-Rodríguez D, Sánchez JE, Nieto MG, Márquez-Rocha FJ (2006) Degradation of endosulfan during substrate preparation and cultivation of Pleurotus pulmonarius. World J Microbiol Biotechnol 22(7):753–760CrossRefGoogle Scholar
  53. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  54. Huang Y, Wang J (2013) Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere 92:760–764PubMedCrossRefGoogle Scholar
  55. Huifang X, Li Q, Wang M, Zhao L (2013) Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a Laccase/Vanillin system. J Microbiol Biotechnol 23:864–871CrossRefGoogle Scholar
  56. Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200CrossRefGoogle Scholar
  57. Hussain R, Mahmood F, Khan MZ, Khan A, Muhammad F (2011) Pathological and genotoxic effects of atrazine in male Japanese quail (Coturnix japonica). Ecotoxicology 20:1–8PubMedCrossRefGoogle Scholar
  58. Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of fungal isolates for degradation of selected pesticides. Bull Env Pharmacol Life Sci 2(4):50–53Google Scholar
  59. Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81PubMedCrossRefGoogle Scholar
  60. Jain R, Garg V, Yadav D (2014) In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation 25:437–446PubMedCrossRefGoogle Scholar
  61. Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406CrossRefGoogle Scholar
  62. Jorenek M, Zajoncova L (2015) Immobilization of Laccase on magnetic carriers and its use in decolorization of dyes. Chem Biochem Eng Q 29:457–466CrossRefGoogle Scholar
  63. Joußen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp 6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64:65e73CrossRefGoogle Scholar
  64. Kadimaliev DA, Revin VV, Atykyan NA, Nadezhina OS, Parshin AA (2011) The role of laccase and peroxidase of Lentinus (Panus) tigrinus fungus in biodegradation of high phenol concentrations in liquid medium. Appl Biochem Microbiol 47(1):66–71CrossRefGoogle Scholar
  65. Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566PubMedCrossRefGoogle Scholar
  66. Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366PubMedCrossRefGoogle Scholar
  67. Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66:888–891PubMedGoogle Scholar
  68. Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J Wood Sci 57:317–322CrossRefGoogle Scholar
  69. Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228PubMedCrossRefGoogle Scholar
  70. Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pest Sci 35:326–332CrossRefGoogle Scholar
  71. Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188(10):588PubMedCrossRefGoogle Scholar
  72. Kearney P, Wauchope R (1998) Disposal options based on properties of soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soil and water. Wiley Publishers Chichester, UKGoogle Scholar
  73. Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353PubMedPubMedCentralGoogle Scholar
  74. Kullman SW, Matsumura F (1996) Metabolic pathway utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600PubMedPubMedCentralGoogle Scholar
  75. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory enriched red agricultural soil. Biol Fertil Soils 47:219–225CrossRefGoogle Scholar
  76. Kurek B, Monties B, Odier E (1990) Influence on the physical state of lignin on its degradability by the lignin peroxidase of Phanerochaete chrysosporium. Enzym Microb Technol 12:771–777CrossRefGoogle Scholar
  77. Lai K, Dave KI, Wild JR (1994) Bimetallic binding motifs in organophosphorus hydrolase are important for catalysis and structural organisation. J Biol Chem 269:16579–16584PubMedGoogle Scholar
  78. Li D, Alic M, Gold MH (1994) Nitrogen regulation of lignin peroxidase gene transcription. Appl Environ Microbiol 60:3447–3449PubMedPubMedCentralGoogle Scholar
  79. Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83:542–547PubMedCrossRefGoogle Scholar
  80. Lu PY, Metcalf RL, Hirwe AS, Williams JW (1975) Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordene, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J Agric Food Chem 23:967–973PubMedCrossRefGoogle Scholar
  81. Majcherczyk A, Johannes C, Hutterman A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzym Microb Technol 22:335–341CrossRefGoogle Scholar
  82. Maloney SE (2001) Pesticide degradation. In: British mycological society symposium series. 23, pp 188–223Google Scholar
  83. Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Azeem F, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23(17):16904–16925CrossRefGoogle Scholar
  84. Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63–76PubMedPubMedCentralCrossRefGoogle Scholar
  85. Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Pereira CS (2015) The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 74:32–44PubMedCrossRefGoogle Scholar
  86. Megharaj M, Madhavi DR, Sreeinvasaulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297PubMedCrossRefGoogle Scholar
  87. Mir-Tutusaus JA, Masís-Mora M, Corcellas C, Eljarrat E, Barceló D, Sarrà M, Caminal G, Vicent T, Rodríguez-Rodríguez CE (2014) Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci Total Environ 500:235–242PubMedCrossRefGoogle Scholar
  88. Mitra A, Roy D, Roy P, Bor AM, Sarkar Mitra AK (2014) Sustainability of Aspergillus spp. in metal enriched substrate aiming towards increasing bioremediation potential. World J Pharm Pharm Sci 3:864–878Google Scholar
  89. Mohapatra PK, Schiewer U (1996) Influence of dimethoate on structure and function of the natural phytoplankton assemblage of Darss_Zingst bodden chain reared in a laboratory. Pol J Environ Stud 5:31–36Google Scholar
  90. Mohapatra PK, Patra S, Samantaray PK, Mohanty RC (2003) Effect of the pyrethroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Pol J Environ Stud 12(2):207–212Google Scholar
  91. Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2015) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263CrossRefGoogle Scholar
  92. Mori T, Kondo R (2002) Oxidation of chlorinated dibenzo-pdioxin and dibenzofran by white-rot fungus Phlebia lindtneri. FEMS Microbiol Lett 216:223–227PubMedCrossRefGoogle Scholar
  93. Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59CrossRefGoogle Scholar
  94. Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of hexachlorocyclohexane (lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48:134–141PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination. Problems and solutions. Kluwer Academic Publishers, Dordrecht, pp 29–48Google Scholar
  96. Nguyen L, Hai FI, Kang J, Leusch F, Roddick F, Magram SF, Price WE, Nghiem LD (2014) Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: effect of mediator type and concentration. J Taiwan Inst Chem Eng 45(4):1855–1862CrossRefGoogle Scholar
  97. Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624CrossRefGoogle Scholar
  98. Nyakundi WO, Magoma G, Ochora J, Nyende AB (2012) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley and central provinces, Kenya. In: Scientific conference proceedingsGoogle Scholar
  99. Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Esser K, Lemke PA (eds) The Mycota. II. Genetics and biotechnology. Springer, Berlin, pp 287–302CrossRefGoogle Scholar
  100. Palmer WE, Bromley PT, Brandenburg RL (2007) Wildlife and pesticides- peanuts. North Carolina Cooperative Extension Service Raleigh, North CarolinaGoogle Scholar
  101. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pant H, Tripathi S (2010) Fungal decay resistance of wood fumigated with chlorpyrifos. Int Biodeterior Biodegradation 64:665–669CrossRefGoogle Scholar
  103. Patel SKS, Kalia VC, Choi J-H, Haw J-R, Kim I-W, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647PubMedCrossRefGoogle Scholar
  104. Peng CL, Gu P, Li J, Chenq Y, Feng CH, Luo HH, Du YJ (2012) Identification and field bioassay of the sex pheromone of Trichophysetis cretacea (Lepidoptera: Crambidae). J Econ Entomol 105:1566–1572PubMedCrossRefGoogle Scholar
  105. Peter L, Gajendiran A, Mani D, Nagaraj S, Abraham J (2015) Mineralization of malathion by Fusarium oxysporum strain JASA1 isolated from sugarcane fields. Environ Prog Sustain Energy 34(1):112–116CrossRefGoogle Scholar
  106. Pickard MA, Roman R, Tinoco R, Vasquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white-rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809PubMedPubMedCentralGoogle Scholar
  107. Pita T, Alves-Pereira I, Ferreira R (2013) Decline in peroxidase and catalases by lindane may cause an increase in reactive oxygen species in Saccharomyces cerevisiae. In: Mendez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms, current status and trends. Wageningen Academic Publishers, NetherlandsGoogle Scholar
  108. Pizzul L, Castillo MP, Stenstrom J (2009) Degradation of glyphosate and other enzymes by lignolytic enzymes. Biodegradation 20:751–759PubMedCrossRefGoogle Scholar
  109. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedPubMedCentralCrossRefGoogle Scholar
  110. Purnomo AS, Kamei I, Londo R (2008) Degradation of 1,1,1-trchloro-2,2-bis(4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105(6):614–621PubMedCrossRefGoogle Scholar
  111. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation 64(5):397–402CrossRefGoogle Scholar
  112. Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44CrossRefGoogle Scholar
  113. Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21(19):11305–11312CrossRefGoogle Scholar
  114. Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I (2017) Biodegradation of aldrin and dieldrin by the White-Rot Fungus Pleurotus ostreatus. Curr Microbiol 74(3):320–324PubMedCrossRefGoogle Scholar
  115. Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungi species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cien Inv Agr 32(2):159–167Google Scholar
  116. Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, London, pp 52–78CrossRefGoogle Scholar
  117. Rigas F, Dritsa V, Marchant R, Papadopoulou K, Avramides EJ, Hatzianestis I (2005) Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ Int 31:191–196PubMedCrossRefGoogle Scholar
  118. Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 104:325–332CrossRefGoogle Scholar
  119. Rivero A, Niell S, Cesio V, Cerdeiras MP, Heinzen H (2012) Analytical methodology for the study of endosulfan bioremediation under controlled conditions with white rot fungi. J Chromatogr B 907:168–172CrossRefGoogle Scholar
  120. Rodríguez-Delgado M, Orona-Navar C, García-Morales R, Hernandez-Luna C, Parra R, Mahlknecht J, Ornelas-Soto N (2016) Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. Int Biodeterior Biodegradation 108:34–41CrossRefGoogle Scholar
  121. Ruiz-Duenas FJ, Guillen F, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol 65:4458–4463PubMedPubMedCentralGoogle Scholar
  122. Ruiz-Duenas FJ, Fernandez E, Martinez MJ, Martinez AT (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to enzyme molecular structure. C R Biol 334:795–805PubMedCrossRefGoogle Scholar
  123. Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood decay fungi. Appl Environ Microbiol 63:3919–3925PubMedPubMedCentralGoogle Scholar
  124. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747e1754CrossRefGoogle Scholar
  125. Salam JA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29(3):475–487PubMedCrossRefGoogle Scholar
  126. Sasek (2003) Why mycoremediations have not yet come to practice. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Dordrecht, pp 247–276CrossRefGoogle Scholar
  127. Schoefs O, Perrier M, Samson R (2004) Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl Microbiol Biotechnol 64:256–261CrossRefGoogle Scholar
  128. Sene L, Converti A, Secchi GAR, Simão RCG (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53(2):487–496CrossRefGoogle Scholar
  129. Sethunathan N, Pathak MD (1972) Increased biological hydrolysis of diazinon after repeated application in rice paddies. J Agric Food Chem 20:586–589PubMedCrossRefGoogle Scholar
  130. Singh BK, Kuhad RC (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28(3):238–241PubMedPubMedCentralCrossRefGoogle Scholar
  131. Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56(2):142–146CrossRefGoogle Scholar
  132. Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane). Adv Appl Microbiol 47:269–298PubMedCrossRefGoogle Scholar
  133. Singh BK, Walker A, Morgan JA, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206PubMedPubMedCentralCrossRefGoogle Scholar
  134. Suhara H, Adachi A, Kamei I, Maekawa N (2011) Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes. Biodegradation 22(6):1075–1086PubMedCrossRefGoogle Scholar
  135. Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702PubMedPubMedCentralCrossRefGoogle Scholar
  136. Thippeswamy B, Shivakumar CK, Krishnappa M (2014) Studies on heavy metals detoxification biomarkers in fungal consortia. Carib J Sci Tech 2:496–502Google Scholar
  137. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O-requiring oxygenase. Proc Natl Acad Sci 81:2280–2284PubMedPubMedCentralCrossRefGoogle Scholar
  138. Ulcnik A, Kralj Cigić I, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29:2239–2247PubMedCrossRefGoogle Scholar
  139. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36PubMedCrossRefGoogle Scholar
  140. Van Emden HF, Peakall DB (1996) Beyond silent spring: integrated pest management and chemical safety, 1st edn. Chapman and Hall, New YorkCrossRefGoogle Scholar
  141. Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012) A rapid two-step bioremediation of the anthraquinone dye, reactive blue 4 by a marine-derived fungus. Water Air Soil Pollut 223:3499–3509CrossRefGoogle Scholar
  142. Virág D, Naar Z, Kiss A (2007) Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull Environ Contam Toxicol 79:356–359PubMedCrossRefGoogle Scholar
  143. Vishwanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:163242. 21 pagesGoogle Scholar
  144. Wang L, Zhang L, Chen H, Tian Q, Zhu G (2005) Isolation of triazophos-degrading strain Klebsiella sp. E6 effectively utilizing triazophos as a sole nitrogen source. FEMS Micrbiol Lett 253:259–265CrossRefGoogle Scholar
  145. Wang F, Hu Y, Guo C, Huang W, Liu CZ (2012a) Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol 110:120–124PubMedCrossRefGoogle Scholar
  146. Wang J, Hirai H, Kawagishi H (2012b) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93(2):831–835PubMedCrossRefGoogle Scholar
  147. Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52:4401–4407Google Scholar
  148. Wang S, Yang Q, Bai Z, Wang S, Wang Y, Nowak KM (2015) Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge. Environ Technol 36:115–123PubMedCrossRefGoogle Scholar
  149. Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85(2):218–224PubMedPubMedCentralCrossRefGoogle Scholar
  150. Xiao P, Mori T, Kamei I, Kondo R (2014) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314:140–146CrossRefGoogle Scholar
  151. Xie H, Zhu L, Ma T, Wang J, Wang J, Su J, Shao B (2010) Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation. J Environ Sci 22(12):1930–1935CrossRefGoogle Scholar
  152. Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Intern Biodeterior Biodegradation 62:51–56CrossRefGoogle Scholar
  153. Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73PubMedCrossRefGoogle Scholar
  154. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169PubMedCrossRefGoogle Scholar
  155. Yang J, Rinker DL, Ripley BD, King EM, Duns G (2002) Degradation of pesticides in water used to prepare mushroom compost. Mushroom World 13(4):15–21Google Scholar
  156. Yin X, Lian B (2012) Dimethoate degradation and calcium phosphate formation induced by Aspergillus niger. Afr J Microbiol Res 6(50):7603–7609CrossRefGoogle Scholar
  157. Yu YL, Fang H, Wang X, XM W, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494PubMedCrossRefGoogle Scholar
  158. Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int J Env Pollut 18(5):423–433CrossRefGoogle Scholar
  159. Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7(2):359–366CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany, School of Life SciencesRavenshaw UniversityCuttackIndia

Personalised recommendations