Skip to main content

Bioremediation of Insecticides by White-Rot Fungi and Its Environmental Relevance

  • Chapter
  • First Online:
Book cover Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The use of insecticides in the last decades has led to serious environmental pollution and residual toxicity to soil organisms. These insecticides are persistent in the environment and have potential toxic effects. Removing these organopollutants from soil in an ecologically responsible, safe and cost-effective way is a top concern. Among various methods available, bioremediation using microorganisms is a potential approach. Ligninolytic, white-rot fungi (WRF) produce extracellular enzyme with low substrate specificity, which makes them suitable candidates for degradation of different compounds notably organopollutants. Keeping this in context, the following work attempts to present an overview of different WRF being used in degradation of insecticides, their enzyme systems responsible for degradation and pathways of degradation. The common microbes used for the study are bacteria and many strains are recommended for the application but degradation ability of fungi is not given proper attention. Several WRF belonging to basidiomycetes and some to ascomycetes have been found with ability to degrade insecticides and herbicides. The ability to form spore during unfavourable condition makes them a better organism as compared to bacteria as they are more persistent. This article mainly focuses on the use of white-rot fungi for biodegradation of insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang EL, Zhao HM, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microb Technol 37:487–496

    Article  CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  PubMed  CAS  Google Scholar 

  • Arisoy M (1988) Biodegradation of chlorinated organic compounds by white rot fungi. Bull Environ Contam Toxicol 60(6):872–876

    Google Scholar 

  • Asgher M, Bhati HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  PubMed  CAS  Google Scholar 

  • Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AA (2013) Characterization and kinetic properties of the purified Trematosphaeria mangrovei laccase enzyme. Saudi J Biol Sci 20:373–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ Health Perspect 103(Suppl 5):59–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baarschers WH, Heitland HS (1986) Biodegradation of fenitrothion and fenitrooxon by the fungus Trichoderma viride. J Agric Food Chem 34:707–709

    Article  CAS  Google Scholar 

  • Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812

    Article  PubMed  CAS  Google Scholar 

  • Balba M, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Barkova K, Kinne M, Ullrich R, Hennig L, Fuchs A, Hofrichter M (2011) Regioselective hydroxylation of diverse flavonoids by an aromatic peroxygenase. Tetrahedron 67:4874–4878

    Article  CAS  Google Scholar 

  • Barr D, Aust S (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78–87

    Article  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegradation 63(4):389–394

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  PubMed  CAS  Google Scholar 

  • Benning MM, Kuo JM, Raushel FM, Holden HM (1994) Three dimensional structure of phosphotriesterase: an enzyme capable of detoxifying organophosphorus nerve agents. Biochemistry 33:15001–15007

    Article  PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2554–2559

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya SS, Syed K, Shann J, Yadav JS (2013) A novel P450-initiated biphasic process for sustainable biodegradation of benzo[a]pyrene in soil under nutrient-sufficient conditions by the white-rot fungus Phanerochaete chrysosporium. J Hazard Mater 261:675–683

    Article  PubMed  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT (1,1,1- trichloro-2,2-bis-(4- chlorophenyl) ethane) by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorous insecticides. Appl Biochem Biotechnol 39(1):715–726

    Article  PubMed  Google Scholar 

  • Buswell JA, Mollet B, Odier E (1984) Ligninolytic enzyme production by Phanerochaete chrysosporium under conditions of nutrient sufficiency. FEMS Microbiol Lett 25:295–299

    Article  CAS  Google Scholar 

  • Canet R, Birnstingl J, Malcolm D, Lopez-Real J, Beck A (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    Article  PubMed  CAS  Google Scholar 

  • Chandrakala Y, Mohapatra PK (2012) Tolerance of Anabaena sp. PCC7119 to cypermethrin measured through photosynthetic pigment fluorescence. Plant Sci Res 34:47–53

    Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7(10):e47205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chrinside AE, Ritter WF, Radosevich M (2011) Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl Environ Soil Sci 2011:1–10

    Article  CAS  Google Scholar 

  • Chu WK, Wong MH, Zhang J (2006) Accumulation, distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L.:II. Enzyme study. Environ Geochem Health 28(1–2):169–181

    Article  PubMed  CAS  Google Scholar 

  • Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    PubMed  PubMed Central  CAS  Google Scholar 

  • Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic–aerobic biodegradation of DDT (dichlorodiphenyl trichloroethane) in soils. Bull Environ Contam Toxicol 63(2):219–225

    Article  PubMed  CAS  Google Scholar 

  • Cycon M, Wojcik M, Borymski S, Piotrowska-seget Z (2012) A broad spectrum analysis of the effects of teflubenzuron exposure on the biochemical activities and microbial community structure of soil. J Environ Manag 108:27–35

    Article  CAS  Google Scholar 

  • Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegradation 117:183–189

    Article  CAS  Google Scholar 

  • Dehghanifard E, Jonidi Jafari A, Rezaei Kalantary R, Mahvi AH, Faramarzi MA, Esrafili A (2013) Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian J Environ Health Sci Eng 10:1–9

    Article  CAS  Google Scholar 

  • Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Biotechnol 24:961–968

    Article  CAS  Google Scholar 

  • Dritsa V, Rigas F, Doulia D, Avramides EJ, Hatzianestis I (2009) Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Water Air Soil Pollut 204(1):19–27

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  PubMed Central  CAS  Google Scholar 

  • Eizuka T, Ito A, Chida T (2003) Degradation of ipconazole by microorganisms isolated from paddy soil. J Pest Sci 28(2):200–207

    Article  CAS  Google Scholar 

  • Escobar VM (2002) Effect of endosulfan on mycellial growth of Pleurotus ostreatus and Auricularia fuscosuccinea in liquid culture. Mushroom Biol Mushroom Prod. 399–408

    Google Scholar 

  • Fan B, Zhao Y, Mo G, Ma W, Wu J (2013) Co-remediation of DDT-contaminated soil using white rot fungi and laccase extract from white rot fungi. J Soils Sediments 13(7):1232–1245

    Article  CAS  Google Scholar 

  • Field JA, De Jong E, Costa GF, De Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white-rot fungi. Appl Environ Microbiol 58:2219–2226

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fragoeiro S, Magan N (2005) Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 7:348–355

    Article  PubMed  CAS  Google Scholar 

  • Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegradation 62:376–383

    Article  CAS  Google Scholar 

  • Fulekar MH (2012) Bioremediation technology: recent advances. Springer Publishers, The Netherlands, pp 147–150

    Google Scholar 

  • Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. Wiley, Chichester, pp 59–84

    Google Scholar 

  • Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 7(6):e38137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guengerich FP, Munro AW (2013) Unusual cytochrome P450 enzymes and reactions. J Biol Chem 288:17065–17073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guenther T, Sack U, Hofrichter M, Laetz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122

    Article  CAS  Google Scholar 

  • Hadibarata T, Zubir MM, Rubiyabto TZ, Chuang TZ, Yusoff AR, Fulazzaky MA, Seng B, Nugroho AE (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391

    Article  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    PubMed  CAS  Google Scholar 

  • Helal IM, Abo-El-Seoud MA (2015) Fungal biodegradation of pesticide vydate in soil and aquatic system. In: 4th international conference on radiation sciences and applications, pp 13–17

    Google Scholar 

  • Hernandez J, Robledo NR, Velasco L, Quintero R, Pickard MA, Vazquez-Duhalt R (1998) Chloroperoxidaes-mediated oxidation of organophosphorus pesticides. Pestic Biochem Physiol 61:87–94

    Article  CAS  Google Scholar 

  • Hernández-Rodríguez D, Sánchez JE, Nieto MG, Márquez-Rocha FJ (2006) Degradation of endosulfan during substrate preparation and cultivation of Pleurotus pulmonarius. World J Microbiol Biotechnol 22(7):753–760

    Article  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Huang Y, Wang J (2013) Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron. Chemosphere 92:760–764

    Article  PubMed  CAS  Google Scholar 

  • Huifang X, Li Q, Wang M, Zhao L (2013) Production of a recombinant laccase from Pichia pastoris and biodegradation of chlorpyrifos in a Laccase/Vanillin system. J Microbiol Biotechnol 23:864–871

    Article  CAS  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Hussain R, Mahmood F, Khan MZ, Khan A, Muhammad F (2011) Pathological and genotoxic effects of atrazine in male Japanese quail (Coturnix japonica). Ecotoxicology 20:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of fungal isolates for degradation of selected pesticides. Bull Env Pharmacol Life Sci 2(4):50–53

    CAS  Google Scholar 

  • Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60:71–81

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Garg V, Yadav D (2014) In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation 25:437–446

    Article  PubMed  CAS  Google Scholar 

  • Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation 14:397–406

    Article  CAS  PubMed  Google Scholar 

  • Jorenek M, Zajoncova L (2015) Immobilization of Laccase on magnetic carriers and its use in decolorization of dyes. Chem Biochem Eng Q 29:457–466

    Article  CAS  Google Scholar 

  • Joußen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp 6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64:65e73

    Article  CAS  Google Scholar 

  • Kadimaliev DA, Revin VV, Atykyan NA, Nadezhina OS, Parshin AA (2011) The role of laccase and peroxidase of Lentinus (Panus) tigrinus fungus in biodegradation of high phenol concentrations in liquid medium. Appl Biochem Microbiol 47(1):66–71

    Article  CAS  Google Scholar 

  • Kamei I, Kondo R (2005) Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 68:560–566

    Article  PubMed  CAS  Google Scholar 

  • Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366

    Article  PubMed  CAS  Google Scholar 

  • Kamei I, Takagi K, Kondo R (2010) Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag Sci 66:888–891

    PubMed  CAS  Google Scholar 

  • Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J Wood Sci 57:317–322

    Article  CAS  Google Scholar 

  • Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228

    Article  PubMed  CAS  Google Scholar 

  • Kataoka R, Takagi K, Sakakibara F (2010) A new endosulfan degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pest Sci 35:326–332

    Article  CAS  Google Scholar 

  • Kaur H, Kapoor S, Kaur G (2016) Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ Monit Assess 188(10):588

    Article  PubMed  CAS  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of soil and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soil and water. Wiley Publishers Chichester, UK

    Google Scholar 

  • Kennedy DW, Aust SD, Bumpus JA (1990) Comparative biodegradation of alkyl halide insecticides by the white rot fungus Phanerochaete chrysosporium (BKM-F-1767). Appl Environ Microbiol 56:2347–2353

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathway utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory enriched red agricultural soil. Biol Fertil Soils 47:219–225

    Article  CAS  Google Scholar 

  • Kurek B, Monties B, Odier E (1990) Influence on the physical state of lignin on its degradability by the lignin peroxidase of Phanerochaete chrysosporium. Enzym Microb Technol 12:771–777

    Article  CAS  Google Scholar 

  • Lai K, Dave KI, Wild JR (1994) Bimetallic binding motifs in organophosphorus hydrolase are important for catalysis and structural organisation. J Biol Chem 269:16579–16584

    PubMed  CAS  Google Scholar 

  • Li D, Alic M, Gold MH (1994) Nitrogen regulation of lignin peroxidase gene transcription. Appl Environ Microbiol 60:3447–3449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83:542–547

    Article  PubMed  CAS  Google Scholar 

  • Lu PY, Metcalf RL, Hirwe AS, Williams JW (1975) Evaluation of environmental distribution and fate of hexachlorocyclopentadiene, chlordene, heptachlor, and heptachlor epoxide in a laboratory model ecosystem. J Agric Food Chem 23:967–973

    Article  PubMed  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hutterman A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzym Microb Technol 22:335–341

    Article  CAS  Google Scholar 

  • Maloney SE (2001) Pesticide degradation. In: British mycological society symposium series. 23, pp 188–223

    Google Scholar 

  • Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Azeem F, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23(17):16904–16925

    Article  Google Scholar 

  • Margot J, Bennati-Granier C, Maillard J, Blánquez P, Barry DA, Holliger C (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63–76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins TM, Hartmann DO, Planchon S, Martins I, Renaut J, Pereira CS (2015) The old 3-oxoadipate pathway revisited: new insights in the catabolism of aromatics in the saprophytic fungus Aspergillus nidulans. Fungal Genet Biol 74:32–44

    Article  PubMed  CAS  Google Scholar 

  • Megharaj M, Madhavi DR, Sreeinvasaulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  PubMed  CAS  Google Scholar 

  • Mir-Tutusaus JA, Masís-Mora M, Corcellas C, Eljarrat E, Barceló D, Sarrà M, Caminal G, Vicent T, Rodríguez-Rodríguez CE (2014) Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci Total Environ 500:235–242

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Roy D, Roy P, Bor AM, Sarkar Mitra AK (2014) Sustainability of Aspergillus spp. in metal enriched substrate aiming towards increasing bioremediation potential. World J Pharm Pharm Sci 3:864–878

    Google Scholar 

  • Mohapatra PK, Schiewer U (1996) Influence of dimethoate on structure and function of the natural phytoplankton assemblage of Darss_Zingst bodden chain reared in a laboratory. Pol J Environ Stud 5:31–36

    CAS  Google Scholar 

  • Mohapatra PK, Patra S, Samantaray PK, Mohanty RC (2003) Effect of the pyrethroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Pol J Environ Stud 12(2):207–212

    CAS  Google Scholar 

  • Morel M, Meux E, Mathieu Y, Thuillier A, Chibani K, Harvengi L, Jacquot J-P, Gelhaye E (2015) Xenomic networks variability and adaptation traits in wood decaying fungi. Microb Biotechnol 6:248–263

    Article  CAS  Google Scholar 

  • Mori T, Kondo R (2002) Oxidation of chlorinated dibenzo-pdioxin and dibenzofran by white-rot fungus Phlebia lindtneri. FEMS Microbiol Lett 216:223–227

    Article  PubMed  CAS  Google Scholar 

  • Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59

    Article  CAS  Google Scholar 

  • Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of hexachlorocyclohexane (lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48:134–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination. Problems and solutions. Kluwer Academic Publishers, Dordrecht, pp 29–48

    Google Scholar 

  • Nguyen L, Hai FI, Kang J, Leusch F, Roddick F, Magram SF, Price WE, Nghiem LD (2014) Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: effect of mediator type and concentration. J Taiwan Inst Chem Eng 45(4):1855–1862

    Article  CAS  Google Scholar 

  • Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624

    Article  CAS  Google Scholar 

  • Nyakundi WO, Magoma G, Ochora J, Nyende AB (2012) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley and central provinces, Kenya. In: Scientific conference proceedings

    Google Scholar 

  • Orth AB, Tien M (1995) Biotechnology of lignin degradation. In: Esser K, Lemke PA (eds) The Mycota. II. Genetics and biotechnology. Springer, Berlin, pp 287–302

    Chapter  Google Scholar 

  • Palmer WE, Bromley PT, Brandenburg RL (2007) Wildlife and pesticides- peanuts. North Carolina Cooperative Extension Service Raleigh, North Carolina

    Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pant H, Tripathi S (2010) Fungal decay resistance of wood fumigated with chlorpyrifos. Int Biodeterior Biodegradation 64:665–669

    Article  CAS  Google Scholar 

  • Patel SKS, Kalia VC, Choi J-H, Haw J-R, Kim I-W, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647

    Article  PubMed  CAS  Google Scholar 

  • Peng CL, Gu P, Li J, Chenq Y, Feng CH, Luo HH, Du YJ (2012) Identification and field bioassay of the sex pheromone of Trichophysetis cretacea (Lepidoptera: Crambidae). J Econ Entomol 105:1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Peter L, Gajendiran A, Mani D, Nagaraj S, Abraham J (2015) Mineralization of malathion by Fusarium oxysporum strain JASA1 isolated from sugarcane fields. Environ Prog Sustain Energy 34(1):112–116

    Article  CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vasquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white-rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pita T, Alves-Pereira I, Ferreira R (2013) Decline in peroxidase and catalases by lindane may cause an increase in reactive oxygen species in Saccharomyces cerevisiae. In: Mendez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms, current status and trends. Wageningen Academic Publishers, Netherlands

    Google Scholar 

  • Pizzul L, Castillo MP, Stenstrom J (2009) Degradation of glyphosate and other enzymes by lignolytic enzymes. Biodegradation 20:751–759

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Purnomo AS, Kamei I, Londo R (2008) Degradation of 1,1,1-trchloro-2,2-bis(4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105(6):614–621

    Article  PubMed  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegradation 64(5):397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44

    Article  CAS  Google Scholar 

  • Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21(19):11305–11312

    Article  CAS  Google Scholar 

  • Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I (2017) Biodegradation of aldrin and dieldrin by the White-Rot Fungus Pleurotus ostreatus. Curr Microbiol 74(3):320–324

    Article  PubMed  CAS  Google Scholar 

  • Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungi species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cien Inv Agr 32(2):159–167

    Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, London, pp 52–78

    Chapter  Google Scholar 

  • Rigas F, Dritsa V, Marchant R, Papadopoulou K, Avramides EJ, Hatzianestis I (2005) Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ Int 31:191–196

    Article  PubMed  CAS  Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 104:325–332

    Article  CAS  Google Scholar 

  • Rivero A, Niell S, Cesio V, Cerdeiras MP, Heinzen H (2012) Analytical methodology for the study of endosulfan bioremediation under controlled conditions with white rot fungi. J Chromatogr B 907:168–172

    Article  CAS  Google Scholar 

  • Rodríguez-Delgado M, Orona-Navar C, García-Morales R, Hernandez-Luna C, Parra R, Mahlknecht J, Ornelas-Soto N (2016) Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi. Int Biodeterior Biodegradation 108:34–41

    Article  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Guillen F, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT (1999) Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol 65:4458–4463

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Fernandez E, Martinez MJ, Martinez AT (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to enzyme molecular structure. C R Biol 334:795–805

    Article  PubMed  CAS  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood decay fungi. Appl Environ Microbiol 63:3919–3925

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27:1747e1754

    Article  CAS  Google Scholar 

  • Salam JA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29(3):475–487

    Article  PubMed  CAS  Google Scholar 

  • Sasek (2003) Why mycoremediations have not yet come to practice. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Dordrecht, pp 247–276

    Chapter  Google Scholar 

  • Schoefs O, Perrier M, Samson R (2004) Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl Microbiol Biotechnol 64:256–261

    Article  CAS  Google Scholar 

  • Sene L, Converti A, Secchi GAR, Simão RCG (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53(2):487–496

    Article  CAS  Google Scholar 

  • Sethunathan N, Pathak MD (1972) Increased biological hydrolysis of diazinon after repeated application in rice paddies. J Agric Food Chem 20:586–589

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol 28(3):238–241

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56(2):142–146

    Article  CAS  Google Scholar 

  • Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of the pesticide lindane (gamma-hexachlorocyclohexane). Adv Appl Microbiol 47:269–298

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suhara H, Adachi A, Kamei I, Maekawa N (2011) Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes. Biodegradation 22(6):1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmet PE, Yadav JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thippeswamy B, Shivakumar CK, Krishnappa M (2014) Studies on heavy metals detoxification biomarkers in fungal consortia. Carib J Sci Tech 2:496–502

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O-requiring oxygenase. Proc Natl Acad Sci 81:2280–2284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulcnik A, Kralj Cigić I, Pohleven F (2013) Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 29:2239–2247

    Article  PubMed  CAS  Google Scholar 

  • Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30:26–36

    Article  PubMed  CAS  Google Scholar 

  • Van Emden HF, Peakall DB (1996) Beyond silent spring: integrated pest management and chemical safety, 1st edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Verma AK, Raghukumar C, Parvatkar RR, Naik CG (2012) A rapid two-step bioremediation of the anthraquinone dye, reactive blue 4 by a marine-derived fungus. Water Air Soil Pollut 223:3499–3509

    Article  CAS  Google Scholar 

  • Virág D, Naar Z, Kiss A (2007) Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull Environ Contam Toxicol 79:356–359

    Article  PubMed  CAS  Google Scholar 

  • Vishwanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Res 2014:163242. 21 pages

    Google Scholar 

  • Wang L, Zhang L, Chen H, Tian Q, Zhu G (2005) Isolation of triazophos-degrading strain Klebsiella sp. E6 effectively utilizing triazophos as a sole nitrogen source. FEMS Micrbiol Lett 253:259–265

    Article  CAS  Google Scholar 

  • Wang F, Hu Y, Guo C, Huang W, Liu CZ (2012a) Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Bioresour Technol 110:120–124

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Hirai H, Kawagishi H (2012b) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93(2):831–835

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52:4401–4407

    Google Scholar 

  • Wang S, Yang Q, Bai Z, Wang S, Wang Y, Nowak KM (2015) Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge. Environ Technol 36:115–123

    Article  PubMed  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85(2):218–224

    Article  PubMed  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kondo R (2014) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314:140–146

    Article  CAS  Google Scholar 

  • Xie H, Zhu L, Ma T, Wang J, Wang J, Su J, Shao B (2010) Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation. J Environ Sci 22(12):1930–1935

    Article  CAS  Google Scholar 

  • Xu G, Zheng W, Li Y, Wang S, Zhang J, Yan Y (2008) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP. Intern Biodeterior Biodegradation 62:51–56

    Article  CAS  Google Scholar 

  • Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73

    Article  PubMed  CAS  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Rinker DL, Ripley BD, King EM, Duns G (2002) Degradation of pesticides in water used to prepare mushroom compost. Mushroom World 13(4):15–21

    Google Scholar 

  • Yin X, Lian B (2012) Dimethoate degradation and calcium phosphate formation induced by Aspergillus niger. Afr J Microbiol Res 6(50):7603–7609

    Article  CAS  Google Scholar 

  • Yu YL, Fang H, Wang X, XM W, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chiao C (2002) Novel approaches for remediation of pesticide pollutants. Int J Env Pollut 18(5):423–433

    Article  CAS  Google Scholar 

  • Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7(2):359–366

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohapatra, D., Rath, S.K., Mohapatra, P.K. (2018). Bioremediation of Insecticides by White-Rot Fungi and Its Environmental Relevance. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_7

Download citation

Publish with us

Policies and ethics