Advertisement

Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development

  • Jyotika Purohit
  • Anirudha Chattopadhyay
  • Mohan K. Biswas
  • Nirbhay K. Singh
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Contamination of water, air, and soil by hazardous toxic substances is one of the major problems faced all over the world. The role of microorganism in the detoxification of soil and environment is distinct and well known. Mycoremediation is an attractive technology in which fungi are used to break down or degrade hazardous toxic substances into less toxic or nontoxic forms. Fungi mostly used as mycoremediator are Pleurotus ostreatus, Rhizopus arrhizus, Phanerochaete chrysosporium, P. sordida, Trametes hirsuta, T. versicolor, Lentinus tigrinus, L. edodes, etc. Its application falls into two categories: in situ and ex situ. The in situ methods treat the contaminated soil in the location in which it is found, whereas ex situ processes require excavation of contaminated soil before they can be put to bioremediation. The present waste disposal and treatment method does not seem to solve the problem of environmental degradation and soil depletion very effectively. Therefore, there is a need to seek alternative means of remediating the contaminants for sustainable development. Hence, in such a situation, mycoremediation is advisable to detoxify the polluted soil and environment with less use of chemicals, energy, and time. However, extensive studies are needed for exploration of fungi as a potential mycoremediator in order to attain agricultural sustainability.

Keywords

Biodegradation Bioremediation Fungi Mycofiltration Xenobiotics Bioventing Biosparging Bioaugmentation 

Abbreviations

2,4-D

2,4-Dichlorophenoxyacetic acid

AmDNT

Amino-dinitrotoluene

CBA

Chlorobenzoic acids

DDT

Dichlorodiphenyltrichloroethane

LiP

Lignin peroxidase

MnP

Manganese peroxidase

PAH

Polycyclic aromatic hydrocarbons

PCBs

Polychlorobenzoic acids

SVOCs

Semi-volatile organic compounds

TNT

Trinitrotoluene

VOCs

Volatile organic compounds

Notes

Acknowledgment

The authors humbly acknowledge the assistance provided by the Hon’ble vice chancellor, S. D. Agricultural University, Sardarkrushinagar, Gujarat-385506 (India) and the Department of Plant Protection, Visva-Bharati, Sriniketan, Birbhum, West Bengal-731236 (India) for preparation of this manuscript.

References

  1. Adenipekun CO, Fasidi IO (2005) Bioremediation of oil polluted soil by Lentinus subnudus, a Nigerian white rot fungus. Afr J Biotechnol 4(8):796–798Google Scholar
  2. Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai1295-22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  3. Anastasi A, Vizzini A, Prigione V, Varese GC (2009) Wood degrading fungi: morphology, metabolism and environmental applications. In: Varma A, Chauhan AK (eds) A textbook of molecular biotechnology. I.K. International, India, pp 957–993Google Scholar
  4. Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281PubMedCrossRefGoogle Scholar
  5. Azab MS, Peterson PJ, Young TWK (1990) Uptake of cadmium by fungal biomass. Microbios 62:23–28Google Scholar
  6. Azadpour A, Powell PD, Matthews J (1997) Use of lignin degrading fungi in bioremediation. Remediation 7:25–49CrossRefGoogle Scholar
  7. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180.  https://doi.org/10.1007/s11274-016-2137-x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812.  https://doi.org/10.1016/j.envpol.2009.04.019 CrossRefPubMedGoogle Scholar
  9. Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12CrossRefGoogle Scholar
  10. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol 96:1049–1055PubMedCrossRefGoogle Scholar
  11. Bernasconi C, Volponi G, Bonadonna L (2006) Comparison of three different media for the detection of E. coli and coliforms in water. Water Sci Technol 54(3):141–145PubMedCrossRefGoogle Scholar
  12. Blanca AL, Angus JB, Katarina S, Joe LR, Nicholas JR (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting. J Hazard Mater 14:340–347Google Scholar
  13. Bonugli-Santos RC, Durrant LR, DaSilva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine derived fungi. Enzym Microb Technol 46:32–37CrossRefGoogle Scholar
  14. Borràs E, Caminal G, Sarra M, Novotny C (2010) Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biol Biochem 42:2087–2093CrossRefGoogle Scholar
  15. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436PubMedCrossRefGoogle Scholar
  16. Casieri L, Anastasi A, Prigione V, Varese GC (2010) Survey of ectomycorrhizal, litter-degrading, and wood-degrading basidiomycetes for dye decolorization and ligninolytic enzyme activity. Anton Leeuw Int J G 98:483–504CrossRefGoogle Scholar
  17. D’Annibale, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72(1):28–36PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dai CC, Tian LS, Zhao YT, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255.  https://doi.org/10.1007/s10532-009-9297-4 CrossRefPubMedGoogle Scholar
  19. da Silva NA, Birolli WG, Seleghim MHR, Porto ALM (2013). Biodegradation of the organophosphate pesticide profenofos by marine fungi. In: Patil YB, Rao P (eds) Applied bioremediation-active and aassive approaches. Rijeka: InTechWeb, pp 149–180. https://doi.org/ 10.5772/56372
  20. Deacon J (2006) Fungal biology. Blackwell, Malden, p 371Google Scholar
  21. Demirbas A (2001) Heavy metal bioaccumulation by mushroom from artificially fortified soils. Food Chem 74:293–301CrossRefGoogle Scholar
  22. Dhankhar R, Hooda A (2011) Fungal biosorption-an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32(5–6):467–491PubMedCrossRefGoogle Scholar
  23. Dhawale SW, Dhawale SS, Dean-Ross D (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol 58:3000–3006PubMedPubMedCentralGoogle Scholar
  24. Donnelly PK, Fletcher JS (1994) Potential use of mycorrhizal fungi as bioremediation agents. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology, American Chemical Society Symposium Series 563. ACS Chicago, Illinois, pp 93–99CrossRefGoogle Scholar
  25. Dugal S, Gangawane M (2012) Metal tolerance and potential of Penicillium species for use in mycoremediation. J Chem Pharm Res 4:2362–2366Google Scholar
  26. EL-Morsy EM (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189CrossRefGoogle Scholar
  27. EPA (1990) Engineering bulletin: slurry biodegradation, EPA/540/2-90/016. Office of Solid Waste and Emergency Response, Washington, DC, pp 1–8Google Scholar
  28. EPA (1995) Bioventing principles and practice. Volume I: bioventing, EPA/540/R-95/534a. Office of Research and Development, 88Google Scholar
  29. EPA (1997) Innovative uses of compost-composting of soils contaminated by explosives, EPA/530/F-997-045, pp 1–4Google Scholar
  30. EPA (1998) An analysis of composting as an environmental remediation technology, EPA/530-R-98-008, pp 116Google Scholar
  31. EPA (2000) Engineered approaches to in situ bioremediation of chlorinated solvents: fundamentals and field applications, EPA-542-R-00-008. Office of Solid Waste and Emergency Response, Washington, DC, p 144Google Scholar
  32. EPA (2004) How to evaluate alternative clean-up technologies for underground storage tank sites-. a guide for corrective action plan reviewers, EPA 510-R-04-002. Office of Solid Waste and Emergency Response, Washington, DC, p 240Google Scholar
  33. Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bio-products generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng, Article ID 329676, pp 6Google Scholar
  34. Farnet AM, Gil G, Ruaudel F, Chevremont AC, Ferre E (2009) Polycyclic aromatic hydrocarbon transformation with laccases of a white-rot fungus isolated from a Mediterranean schlerophyllous litter. Geoderma 149:267–271CrossRefGoogle Scholar
  35. Felsot AS, Racke KD, Hamilton DJ (2003) Disposal and degradation of pesticide waste. Rev Environ Contam Toxicol 177:123–200PubMedGoogle Scholar
  36. Filley TR, Cody GD, Goodell B, Jellison J, Noser C, Ostrofsky A (2002) Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Org Geochem 33:111–124CrossRefGoogle Scholar
  37. Frishmuth RA, Ratz JW, Blicker BR, Hall JF, Downey DC (1995) In-Situ bioventing in deep soils at arid sites. In: Vidic RD, Pohland FG (eds) Innovative technologies for site remediation and hazardous waste management, Proc Natl Conf American Society of Civil Engineers, New York, pp 157–164Google Scholar
  38. FRTR (2003) Remediation technologies screening matrix and reference guide, Version 4.0Google Scholar
  39. Gadd G (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119CrossRefGoogle Scholar
  40. Gadd GM, Esfahani JB, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28(2–3):36–55.  https://doi.org/10.1016/j.fbr.2014.05.001 CrossRefGoogle Scholar
  41. Garon D, Krivobok S, Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40:91–97PubMedCrossRefGoogle Scholar
  42. Gaur AC (1999) Microbial technology for composting of agricultural residues by improved methods. ICAR, New Delhi, p 72Google Scholar
  43. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534Google Scholar
  44. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5:497–526.  https://doi.org/10.1002/elsc.200520098 CrossRefGoogle Scholar
  45. Gibbs JT, Alleman BC, Gillespie RD, Foote EA, McCall SE, Snyder FA, Hicks JE, Crowe RK, Ginn J (1999) Bioventing nonpetroleum hydrocarbons. In: Engineered approaches for in situ bioremediation of chlorinated solvent contamination. Fifth International in situ and on-site bioremediation symposium, Battelle Press, Columbus, Ohio, pp 7–14Google Scholar
  46. Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161Google Scholar
  47. Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza. Springer-Verlag, Berlin, pp 3–27CrossRefGoogle Scholar
  48. Guibal E, Roulph C, Le Cloirec P (1995) Infrared spectroscopic study of uranyl biosorption by fungal biomass and materials of biological origin. Environ Sci Technol 29:2496–2503PubMedCrossRefGoogle Scholar
  49. Gurug KS, Tanabe S (2001) Contamination by persistent organochlorines and butylin compounds in the west coast of Sri Lanka. Pollut Bull 42(3):179–186CrossRefGoogle Scholar
  50. Hamsavathani V, Aysha OS, Valli S (2015) Biodegradation of xenobiotics: a review on petroleum hydrocarbons and pesticide degradation. W J Pharma Pharmaceut Sci 4(11):1791–1808Google Scholar
  51. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance and conservation. Mycol Res 95:641–655CrossRefGoogle Scholar
  52. Hazen TC (2010) Cometabolic bioremediation. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2505–2514CrossRefGoogle Scholar
  53. Hofrichter M, Scheibner K, Bublitz F, Schneegaβ I, Ziegenhagen D, Fritsche W (1999) Depolymerization of straw lignin by manganese peroxidase from Nematoloma frowardii is accompanied by release of carbon dioxide. Holzforschung 52:161–166Google Scholar
  54. Isikhuemhen OS, Anoliefo G, Oghale O (2003) Bioremediation of crude oil polluted soil by the white-rot fungus, Pleurotus tuberregium (Fr.) Sing. Environ Sci Pollut Res 10(2):108–112CrossRefGoogle Scholar
  55. Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 4:53–61.  https://doi.org/10.4489/MYCO.2009.37.1.053 CrossRefGoogle Scholar
  56. Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju protein: a potential biosorptive agent. Adv Bio Tech 4:25–27Google Scholar
  57. Joutney NT, Bahafid W, Sayel H, Ghachtouli NE (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R, Rosenkranz F (eds) Biodegradation – life of science. InTech, Rejika, pp 289–320Google Scholar
  58. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer-Verlag, Berlin, pp 31–64CrossRefGoogle Scholar
  59. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res, Article ID 805187, 1–11CrossRefGoogle Scholar
  60. Kearney PC, Kellog ST (1985) Microbial adaptation to pesticides. Pure Appl Chem 57:389–403CrossRefGoogle Scholar
  61. King RB, Sheldon JK, Long GM (1997) Practical environmental bioremediation: the field guide, 2nd edn. Lewis, Boca Raton, p 208Google Scholar
  62. Kirk TK, Farrell RL (1987) Enzymatic combination–microbial degradation of lignin. Annu Rev Microbiol 41:465–505PubMedCrossRefGoogle Scholar
  63. Kumar A, Bisht S, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079–1093Google Scholar
  64. Kurek E, Czaban J, Bollag J (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbial 43:1011–1015Google Scholar
  65. Lamar RT, White RB (2001) Mycoremediation: commercial status and recent developments. In: Magar VS, von Fahnestock MF, Leeson A (eds) Proceedings Sixth International Symposium on In Situ and On-Site Bioremediation. San Diego, pp 263–278Google Scholar
  66. Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4(2):190–195Google Scholar
  67. Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, New York, pp 141–150CrossRefGoogle Scholar
  68. Leyval C, Turnau K, Haselwandter K (1997) Effects of heavy metalpollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  69. Litchfield CD (1993) In-situ bioremediation: basis and practices. In: Levin MA, Gealt MA (eds) Biotreatment of industrial and hazardous wastes. McGraw-Hill, New York, p 331Google Scholar
  70. Luo D, Xie YF, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34(2):359–365PubMedGoogle Scholar
  71. da Luz JM, Paes SA, Nunes MD, da Silva Mde C, Kasuya MC (2013) Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 4(8):e69386.  https://doi.org/10.1371/journal.pone.0069386 CrossRefGoogle Scholar
  72. Ma J, Zhai G (2012) Microbial bioremediation in omics era: opportunities and challenges. J Bioremed Biodegr 3:e120.  https://doi.org/10.4172/2155-6199.1000e120 CrossRefGoogle Scholar
  73. McErlen C, Marchant R, Banat IM (2006) An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Anton Leeuw Int J G 90:147–158CrossRefGoogle Scholar
  74. Meriel W (2005) Pesticide: sowing poison, growing hunger, reaping sorrow. Pesticide Action Network Asia and Pacific Policy Research and Analysis, vol 2. Penang, Malaysia, pp 1–27Google Scholar
  75. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375PubMedCrossRefGoogle Scholar
  76. Muhammad MJ, Ikram-ul-Haq, Farrukh S (2007) Biosorption of mercury from industrial effluent by fungal consortia. Bioremed J 11:149–153CrossRefGoogle Scholar
  77. Nakagawa A, Osawa S, Hirata T, Yamagishi Y, Hosoda J, Horikoshi T (2006) 2,4-Dichlorophenol degradation by the soil fungus Mortierella sp. Biosci Biotechnol Biochem 70(2):525–527PubMedCrossRefGoogle Scholar
  78. Nagy B, Maicaneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu L, Majdik C (2014) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem E 45(3):921–929CrossRefGoogle Scholar
  79. NFESC (2005) Remediation technology selection: biopile/composting. NFESC Environmental Services Web Site. NFESC. http://enviro.nfesc.navy.mil
  80. Novotny C, Erbanova T, Cajthaml P, Rothchild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853PubMedCrossRefGoogle Scholar
  81. Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lange E, Sasek V (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36(10):1545–1551CrossRefGoogle Scholar
  82. Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444.  https://doi.org/10.1007/s11157-013-9320-4 CrossRefGoogle Scholar
  83. Olusola SA, Anslem EE (2010) Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant. J Bioremed Biodegr 1:113.  https://doi.org/10.4172/2155-6199.1000113 CrossRefGoogle Scholar
  84. Orlandelli RC, de Almeida TT, Alberto RN, Polonio JC, Azevedo JL, Pamphile JA (2015) Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw. Braz J Microbiol 46(2):359–366PubMedPubMedCentralCrossRefGoogle Scholar
  85. Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716PubMedCrossRefGoogle Scholar
  86. Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res 22:955–974CrossRefGoogle Scholar
  87. Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427PubMedCrossRefGoogle Scholar
  88. Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 4:293–297Google Scholar
  89. Petrini O, Sieber T, Toti L, Viret O (1992) Ecology metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196PubMedCrossRefGoogle Scholar
  90. Philp J, Atlas R (2005) Bioremediation of contaminated soil and aquifers. In: Atlas RM, Jim CP (eds) Bioremediation: applied microbial solution for real-world environmental clean up. ASM Press, Washington, DC, p 139CrossRefGoogle Scholar
  91. Pickard MA, Roman R, Tinoco R, Vazquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260laccase. Appl Environ Microbiol 65:3805–3809PubMedPubMedCentralGoogle Scholar
  92. Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214CrossRefGoogle Scholar
  93. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
  94. Pointing SB, Vrijmoed LLP, Jones EBG (1998) A qualitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 41:293–298CrossRefGoogle Scholar
  95. Prasad R (2017) Mycoremediation and environmental sustainability. Springer Nature Singapore Pte Ltd. (ISBN 978–3–319-68957-9)Google Scholar
  96. Prasad R, Pham GH, Kumari R, Singh A, Yadav V, Sachdev M, Peskan T, Hehl S, Oelmuller R, Garg AP, Varma A (2005) Sebacinaceae: culturable mycorrhiza-like endosymbiotic fungi and their interaction with non-transformed and transformed roots. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas, vol 4. Springer-Verlag, Berlin, pp 291–312CrossRefGoogle Scholar
  97. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 1–7Google Scholar
  98. Purnomo AS, Mori T, Takagi K, Kondo R (2011) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65(5):691–695CrossRefGoogle Scholar
  99. Raghukumar C, Chandramohan D, Michel FCJ, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–108CrossRefGoogle Scholar
  100. Rajput Y, Shit S, Shukla A, Shukla K (2011) Biodegradation of malachite green by wild mushroom of Chhattisgarh. J Exp Sci 2(10):69–72Google Scholar
  101. Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH (2007) Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg Sci Technol 48:139–153.  https://doi.org/10.1016/j.coldregions.2006.11.001 CrossRefGoogle Scholar
  102. Remoudaki E, Hatzikioseyian A, Tsezos M (2007) Metabolically mediated metal immobilization processes for bioremediation, Proceedings of Balkan Mineral Processing Conference, Delfi, Greece, pp 481–486Google Scholar
  103. Rhodes CJ (2014) Mycoremediation (bioremediation with fungi)-growing mushrooms to clean the earth. Chem Speciat Bioavailab 26(3):196–198CrossRefGoogle Scholar
  104. Rockne K, Reddy K (2003) Bioremediation of contaminated sites. Proceedings international e-conference on modern trends in foundation engineering: geotechnical challenges and solutions, IIT Madras, India, Pp 22Google Scholar
  105. Ross IS, Townsley CC (1986) The uptake of heavy metals by filamentous fungi. In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. Ellis Horwood, Chichester, pp 49–57Google Scholar
  106. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Núñez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MP, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77(17):6076–6084PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J Environ Biol 13:159–167Google Scholar
  108. Schauer F, Borriss R (2004) Biocatalysis and biotransformation. In: Tkacz JS, Lane L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Kluwer/Plenum, New York, pp 237–306CrossRefGoogle Scholar
  109. Singh H (2006) Mycoremediation – fungal bioremediation. Wiley, New Jersey, p 573Google Scholar
  110. Singh A, Gauba P (2014) Mycoremediation: a treatment for heavy metal pollution of soil. J Civil Eng Environ Technol 1(4):59–61Google Scholar
  111. Singh S, Nain L (2014) Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Natn Sci Acad 80(2):473–481CrossRefGoogle Scholar
  112. Sinha S, Chattopadhyay P, Pan I, Chatterjee S, Chanda P, Bandyopadhyay D, Das K, Sen SK (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8(22):6016–6027CrossRefGoogle Scholar
  113. Sivasankaran MA, Reddy SS, Govindaradjan S, Ramesh R (2007) Organochlorine residuals in ground water of Pondicherry region. J Environ Sci Eng 49(1):7–12PubMedGoogle Scholar
  114. Steffen K, Hofrichter M, Hatakka A (2000) Mineralization of 14C-labelledsynthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825PubMedCrossRefGoogle Scholar
  115. Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbial 41:237–245Google Scholar
  116. Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a review. Bioremed J 12:70–87CrossRefGoogle Scholar
  117. Suthar S (2007) Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes. Bioresour Technol 98(8):1608–1614PubMedCrossRefGoogle Scholar
  118. Sutherland C, Venkobachar C (2013) Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus. Int J Plant Animal Environ Sci 4:193–203Google Scholar
  119. Suthersan SS (1999) Remediation engineering: design concepts. CRC Press LLC, Boca Raton, p 384Google Scholar
  120. Talley J (2005) Introduction of recalcitrant compounds. In: Jaferey W, Talley L (eds) Bioremediation of recalcitrant compounds. CRC, Boca Raton, pp 1–9CrossRefGoogle Scholar
  121. Tanaka H, Itakura S, Enoki A (1999) Hydroxyl radical generation by an extracellular low- molecular–weight substance and phenol oxidase activities during wood degradation by the white–rot basidiomycetes Trametes versicolor. J Biotechnol 75(1):57–70PubMedCrossRefGoogle Scholar
  122. Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 4:825–830CrossRefGoogle Scholar
  123. Terrazas E, Alvarez T, Benoit G, Mattiasson B (2005) Isolation and characterization of a white rot fungus Bjerkandera sp. strain capable of oxidizing phenanthrene. Biotechnol Lett 27:845–851CrossRefGoogle Scholar
  124. Tian LS, Dai CC, Zhao YT, Zhao M, Yong YH, Wang XX (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. Chin Environ Sci (in Chinese) 27(6):757–762Google Scholar
  125. Tigini V, Prigione V, Toro SD, Fava F, Varese GC (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:5CrossRefGoogle Scholar
  126. Tiwari G, Singh SP (2014) Application of bioremediation on solid waste management. J Bioremed Biodegr 5:248.  https://doi.org/10.4172/2155-6199.1000248 CrossRefGoogle Scholar
  127. Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2, 4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 4:1079–1083.  https://doi.org/10.1007/s10529-013-1179-5 CrossRefGoogle Scholar
  128. Volesky B, Holan ZR (1995) Biosorption of heavy metals: review. Biotechnol Prog 11:235–250PubMedCrossRefGoogle Scholar
  129. Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451PubMedCrossRefGoogle Scholar
  130. Yan G, Viraraghavan T (2000) Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA 26:119–123Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jyotika Purohit
    • 1
  • Anirudha Chattopadhyay
    • 1
  • Mohan K. Biswas
    • 2
  • Nirbhay K. Singh
    • 3
  1. 1.Department of Plant Pathology, C.P. College of AgricultureS.D. Agricultural UniversitySardarkrushinagarIndia
  2. 2.Department of Plant ProtectionPalli Siksha Bhavana (Institute of Agriculture), Visva-BharatiSriniketanIndia
  3. 3.Department of Microbiology, C.P. College of AgricultureS.D. Agricultural UniversitySardarkrushinagarIndia

Personalised recommendations