Role of Phytochelatins (PCs), Metallothioneins (MTs), and Heavy Metal ATPase (HMA) Genes in Heavy Metal Tolerance

  • Khushboo Chaudhary
  • Swati Agarwal
  • Suphiya Khan
Part of the Fungal Biology book series (FUNGBIO)


Phytoremediation has been approved an economical technology for the cleanup of environmental contaminants and biomass production. Germplasm of hyperaccumulators is the backbone of this technology. Therefore, understanding the genetics of hyperaccumulation is an important tool for the enhancement of hyperaccumulation efficiency. Phytochelatins (PCs) and metallothioneins (MTs) and heavy metal ATPase (HMA) genes play a crucial role in signaling, uptake, detoxification, and accumulation of metal. Their combined role enhances the hyperaccumulation efficiency. This chapter highlights the role of these genes, their mechanism of action, their structure, and their applications in the transgenic approach of hyperaccumulation. Further, it also highlights the role of uptake and detoxification of metals by cellular mechanisms which facilitate the phytoremediation of heavy metals from contaminated areas.


Heavy metal ATPase Hyperaccumulator Phytochelatins Metallothioneins 



The authors are deeply thankful to Prof. Aditiya Shastri for the generous financial support to complete this research work, the Bioinformatics Centre of Banasthali University, Newai (Rajasthan), India, for computational work, and also to the funding support from “MHRD Project on Center of Excellence in Water and Energy” Frontier Areas of Science and Technology (FAST 5-5/2014 TS VII).


  1. Abdul MR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175CrossRefGoogle Scholar
  2. Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, de Pamphillis CW, Schulth EB, Yuceer C (2011) Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. J Exp Bot 62(11):3737–3752PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881PubMedCrossRefGoogle Scholar
  4. Andresen E, Mattusch J, Wellenreuther G, Thomas G, Arroyo Abad U, Kupper H (2013) Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 5(10):1377–1386PubMedCrossRefGoogle Scholar
  5. Bai XJ, Liu LJ, Zhang CH, Ge Y, Cheng W (2011) Effect of H2O2 pretreatment on Cd tolerance of different rice cultivars. Rice Sci 18:29–35CrossRefGoogle Scholar
  6. Baligar VC, Shaffert RE, Dos Santos HL, Pitta GVE, Filho B, AFDeC (1993) Soil aluminium effects on uptake influx and transport of nutrients in sorghum genotypes. Plant Soil 150(2):271–277CrossRefGoogle Scholar
  7. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbic 34(1):3–14Google Scholar
  8. Barabasz A, Wilkowska A, Tracz K, Ruszczyñska A, Bulska E, Mills RF (2013) Expression of HvHMA2 in tobacco modifies Zn-Fe-Cd homeostasis. J Plant Physiol 170:1176–1186PubMedCrossRefGoogle Scholar
  9. Bengtsson B, Asp H, Jensn P (1994) Uptake and distribution of calcium and phosphorus in beech (Fagus sylvatica) as influences by aluminum and nitrogen. Tree Physiol 14(1):63–73PubMedCrossRefGoogle Scholar
  10. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120CrossRefGoogle Scholar
  11. Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62(7):2251–2264PubMedCrossRefGoogle Scholar
  12. Bose J, Babourina O, Shabala S, Rengel Z (2013) Low-pH and aluminium resistance in Arabidopsis correlates with high cytosolic magnesium content and increase magnesium uptake by plant roots. Plant Cell Physiol 54(7):1093–1104PubMedCrossRefGoogle Scholar
  13. Bractic AM, Majic DB, Samardzc JT, Maksimovic VR (2009) Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complexes stress stimuli. J Plant Physiol 166:996–1000CrossRefGoogle Scholar
  14. Brunetti P, Zanella L, Depoolis A, Dilitta D, Ceuhetti V, Falasca G, Barbieri M, Altamura MM, Castantino P, Cardarelli M (2015) Cadmium inducible expression of the ABC-type Trnasporter AtABCC3 increases phytochelatin mediated cadmium tolerance in Arabidopsis. J Exp Bot 66(13):3815–3829PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chaudhary K, Sumira J, Khan S, (2016) Heavy metal ATPase (HMA2, HMA3 & HMA4) genes in hyperaccumulation mechanism of heavy metals. Plant metal interaction (emerging remediation techniques) 545–556CrossRefGoogle Scholar
  16. Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400PubMedCrossRefGoogle Scholar
  17. Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120CrossRefGoogle Scholar
  18. Clemens S (2006) Evolution and function of phytochelatins synthases. J Plant Physiol 163:319–332PubMedCrossRefGoogle Scholar
  19. Cobbett C (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–833PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cumming JR, Eckert RT, Evans LS (1986) Effect of aluminium on 32P uptake and translocation by red spruce seedlings. Can J For Res 16(4):864–867CrossRefGoogle Scholar
  21. Dago A, Gonzalez I, Arino C, Martinez-Coronado A, Higueras P, Diaz-Cruz JM, Esteban M (2014) Evaluation of mercury stress in plants from the Almaden mining district by analysis of phytochelatins and their Hg complexes. Environ Sci Technol 48(11):6256–6263PubMedCrossRefGoogle Scholar
  22. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212CrossRefGoogle Scholar
  23. Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biol 32:527–533CrossRefGoogle Scholar
  24. Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Chakrabarty D (2010) Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root. Funct Integr Genomics 14(2):401–417CrossRefGoogle Scholar
  25. Dubey S, Shri M, Misra P, Lakhwani D, Bag SK, Asif MH, Trivedi PK, Tripathi RD, Chakraborty D (2014) Heavy metal induce oxidative stress and genome wide modulation in transcriptome of rice root. Funct Integr Genomics 14(2):401–417PubMedCrossRefGoogle Scholar
  26. Fassler E, Robinson BH, Gupta SK, Schulin R (2010) Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nut Cycle Agro 87:339–352CrossRefGoogle Scholar
  27. Franchia N, Piccinnia E, Ferroa D, Bassod G, Spolaoree B, Santovitoa G, Ballarin L (2015) Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium. Aquat Toxicol 152:47–56CrossRefGoogle Scholar
  28. Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D (2012) Genome wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 12:635–647PubMedCrossRefGoogle Scholar
  29. Gomes MMS, Cambraia J, Sant’s anna R, Estevao MM (1985) Aluminium effects on uptake and translocation of nitrogen in sorghum (Sorghum bicolor, L. Moench). J Plant Nutr 8(6):457–465CrossRefGoogle Scholar
  30. Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plant a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  31. Grill E, Loeffler S, Winnacker EL, Zenk MH (1989) Phytochelatins the heavy metals binding peptides of plants are synthesized from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IIMT2b, gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Cont Toxic 94:247–253CrossRefGoogle Scholar
  33. Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706PubMedPubMedCentralCrossRefGoogle Scholar
  34. Guo J, Xu L, Su X, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3 a Metallothionein gene of sugarcane play an important role in the regulation of heavy metal tolerance accumulation. Hindawi Publishing Corporation BioMed Research International. Google Scholar
  35. Hameed A, Rasool S, Azooz MM, Hossain MA, Ahanger MA Ahmad P, (2016) Heavy metal stress: plant responses and signalling. Plant metal interaction (emerging remediation techniques) 557–583CrossRefGoogle Scholar
  36. Hanger BC (1979) The movement of calcium in plants. Commun Soil Sci Plant Anal 10(1–2):171–193CrossRefGoogle Scholar
  37. Hassinen VH, Tervahauta AI, Schat H, Ka SO (2011) Plant-metallothioneins-metal chelators with ROS scavenging activity? Plant Biol 13:225–232PubMedCrossRefGoogle Scholar
  38. Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Hustard S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol 159(3):1125–1137PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hossain MA, Ashrafuzzaman M, Hossain AKMZ, Ismail MR, Koyama H (2014) Role of accumulated calcium in alleviating aluminum injury in wheat plants. Sci World J 2014:5–6Google Scholar
  40. Huang J, Bachelard EP (1993) Effects of aluminium on growth and cation uptake in seedlings of Eucalyptus mannifera and Pinus radiata. Plant Soil 149(1):121–127CrossRefGoogle Scholar
  41. Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in responses to metal stress. Aquat Toxicol 99:86–92PubMedCrossRefGoogle Scholar
  42. Huang GY, Wang YS, Ying GG (2011) Cadmium inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132CrossRefGoogle Scholar
  43. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  44. Inhouhe M (2005) Phytohelatins. Braz J Plant Physiol 17:65–78CrossRefGoogle Scholar
  45. Israr M, Sahi SV (2006) Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch Environ Contam Toxicol 50:121–127PubMedCrossRefGoogle Scholar
  46. Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397PubMedCrossRefGoogle Scholar
  47. Kasai M, Sasaki M, Yamamoto Y, Matsumoto H (1992) Aluminum stress increases Kp efflux and activities of ATP- and PPi dependent Hp pumps of tonoplast-enriched membrane vesicles from barley roots. Plant Cell Physiol 33(7):1035–1039Google Scholar
  48. Kuhnlenz T, Schmidt H, Uraguchi S, Clemens S (2014) Arabidopsis thaliana phytochelatins synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil. J Exp Bot 65(15):4241–4253PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kumar S, Trivedi PK (2016) Heavy metal stress signalling in plants. Plant metal interaction (emerging remediation techniques) 585–603CrossRefGoogle Scholar
  50. Kwankua W, Sengsai S, Muangphra P, Euawong N (2012) Screening for plants sensitive to heavy metals using cytotoxic and genotoxic biomarkers. Kasetsart J-Nat Sci 46:10–23Google Scholar
  51. Lee S (2014) Artificial induction of cadmium tolerance and its further enhancement via heterologous co-expression of SpHMT1 and AtPCS1 in the yeast cells. J Korean Soc Appl Biol Chem 57:307–310CrossRefGoogle Scholar
  52. Li Z, Xing D (2010) Mitochondrial pathway leading to programmed cell death induced by aluminum phytotoxicity in Arabidopsis. Plant Signal Behav 5:1660–1662PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminium interactions in soybean in relation to aluminium tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076PubMedCrossRefGoogle Scholar
  55. Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper induced hydrogen peroxide upregulation of a metallothioneins gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108PubMedCrossRefGoogle Scholar
  56. Lombi E, Terall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128(4):1359–1367PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lori V, Pietrini F, Massacci A, Zacchini M (2015) Morphophysiological responses, heavy metal accumulation and phytoremoval ability in four willow clones exposed to cadmium under hydroponics. In: Phytoremediation. Springer International Publishing, pp. 87–98Google Scholar
  58. Lu L, Tian SK, Yang XE, Li TQ, He ZI (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166(6):579–587PubMedCrossRefGoogle Scholar
  59. Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519CrossRefGoogle Scholar
  60. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefGoogle Scholar
  61. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68(1):1–13CrossRefGoogle Scholar
  62. Mahmood T (2010) Phytoextraction of heavy metals the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109Google Scholar
  63. Mariano ED, Keltjens WG (2005) Long term effects of aluminum exposure on nutrient uptake by maize genotypes differing in aluminum resistance. J Plant Nutr 28(2):323–333CrossRefGoogle Scholar
  64. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162PubMedCrossRefGoogle Scholar
  65. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 203–221Google Scholar
  66. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FM (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61(4):561–572PubMedCrossRefGoogle Scholar
  67. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60(1):57–68CrossRefGoogle Scholar
  68. Mehdawi EFA, Quinn CF, Pilon-Smits EAH (2011) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory curt. Curr Biol 21:1440–1449PubMedCrossRefGoogle Scholar
  69. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208PubMedGoogle Scholar
  70. Memon AR, Schroder P (2009) Implications of metal accumulations mechanisms to phytoremediation. Environ Sci Pollut Res 16(2):162–175CrossRefGoogle Scholar
  71. Meyer C, Verbruggen N (2012) The use of the modal species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. New Biotechnol 30:9–14CrossRefGoogle Scholar
  72. Migocka M, Kosieradzka A, Papierniak A, Maciaszczyk-Dziubinska E, Posyniak E, Garbiec A, Filleur S (2014) Two metal tolerance proteins, MTP1 and MTP4 are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66(3):1001–1015PubMedCrossRefGoogle Scholar
  73. Mils RF, Krjiger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176CrossRefGoogle Scholar
  74. Mirza N, Mahmood Q, Shah MM, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 2014:1–11CrossRefGoogle Scholar
  75. Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella asiatica. Inter J Environ Sci Dev 3(1):89–95Google Scholar
  76. Moustakas M, Ouzounidou G, Lannoye R (1995) Aluminum effects on photosynthesis and elemental uptake in an aluminium-tolerant and non-tolerant wheat cultivar. J Plant Nutr 18(4):669–683CrossRefGoogle Scholar
  77. Mugica-Alvarez V, Cortes-Jimenez V, Vaca-Mier M, Dommguez-Soria V (2015) Phytoremediation of mine tailings using Lolium multiflorum. Int J Environ Sci Dev 6(4):246–251CrossRefGoogle Scholar
  78. Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine water: a review. Glob Environ Res 4:135–150Google Scholar
  79. Nematian MA, Kazemeini F (2013) Accumulation of Pb, Zn, Cu and Fe in plants and hyperaccumulator choice in Galali iron mine area. Iran Intl J Agri Crop Sci 5(4):426–432Google Scholar
  80. Nichol BE, Oliveira LA, Glass ADM, Saiddiqi MY (1993) The effect of aluminum on the influx of calcium, potassium, ammonium nitrate and phosphate in an aluminum sensitive cultivar of barley (Hordeum vulgare L.). Plant Physiol 101(4):1263–1266PubMedPubMedCentralCrossRefGoogle Scholar
  81. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126CrossRefGoogle Scholar
  82. Palma JM, Gupta DK, Corpas FJ (2013) Metalloenzymes involved in the metabolism of reactive oxygen species and heavy metal stress. In: Dharmendra K, Gupta Francisco J, Corpas José M (eds) Palma Heavy metal stress in plants. Springer, Berlin, pp. 1–17Google Scholar
  83. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823PubMedPubMedCentralCrossRefGoogle Scholar
  84. Park W, Feng Y, Ahn SJU (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7(1):96–112PubMedPubMedCentralCrossRefGoogle Scholar
  85. Petrlova J, Potesil D, Mikelova R (2006) Attomolevoltammetric determination of metallothionein. Electrochim Acta 51:5112–5119CrossRefGoogle Scholar
  86. Phukan P, Phukan R, Phukan SN (2015) Heavy metal uptake capacity of Hydrilla verticillata: a commonly available aquatic plant. Int Res J Environ Sci 4(3):35–40Google Scholar
  87. Pollard AJ, Stewart HL, Roberson CB (2009) Manganese hyperaccumulation in Phytolacca americana L. from the southeastern United States. Northeast Nat 16:155–162CrossRefGoogle Scholar
  88. Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–232CrossRefGoogle Scholar
  89. Purcino AAC, Alves VMC, Parentoni SN, Belele CL, Loguercio LL (2003) Aluminum effects on nitrogen uptake and nitrogen assimilating enzymes in maize genotypes with contrasting tolerance to aluminum toxicity. J Plant Nutr 26(1):31–61CrossRefGoogle Scholar
  90. Qiao XQ, Zheng ZZ, Zhang LF, Wang JH, Shi GX, Xu XY (2015) Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L. Subcellular distribution, polyamine and proline. Chemosphere 120:179–187PubMedCrossRefGoogle Scholar
  91. Rengel Z, Elliott DC (1992) Mechanism of aluminium inhibition of net 45Ca2p uptake by amaranthus protoplasts. Plant Physiol 98(2):632–638PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ribeiro MAQ, de Almeida AAF, Mielke MS, Gomes FP, Pires MV, Baligar VC (2013) Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. J Plant Nutr 36(8):1161–1179CrossRefGoogle Scholar
  93. Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr (VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047PubMedCrossRefGoogle Scholar
  94. Roy AK, Sharma A, Talukder G (1988) Some aspects of aluminum toxicity in plants. Bot Rev 54(2):145–178CrossRefGoogle Scholar
  95. Saba G, Parizanganeh AH, Zamani A, Saba J (2015) Phytoremediation of heavy metals contaminated environments: screening for native accumulator plants in Zanjan-Iran. Int J Environ Res 9(1):309–316Google Scholar
  96. Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soil from Southwest Louisiana. Microchem J 97(2):207–212CrossRefGoogle Scholar
  97. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefPubMedPubMedCentralGoogle Scholar
  98. Sharma DM, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68PubMedCrossRefGoogle Scholar
  99. Sharma RK, Aditi P, Yukti M, Alok A (2014) Newly modified silica-based magnetically driven nano-adsorbent: a sustainable and versatile platform for efficient and selective recovery of cadmium from water and fly-ash ameliorated soil. Sep Purif Technol 127:121–130CrossRefGoogle Scholar
  100. Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2016) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. Plant metal interaction (emerging remediation techniques) Elsevier, New York,p 263–283Google Scholar
  101. Shen GH, Zhu C, Du QZ (2010) Genome wide identifications of phytochelatins and phytoch-synth domain-containing phytochelatins family from rice. Electron J Biol 6:73–79Google Scholar
  102. Shine AM, Shakya VP, Idhurm A (2015) Phytochelatin synthase is required for tolerating metal toxicity in a basidomycete yeast and is a conserved factor involved in metal homeostasis in fungi. Fungal Biol Biotechnol 2:1–13. 101186/540694CrossRefGoogle Scholar
  103. Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784Google Scholar
  104. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412PubMedCrossRefGoogle Scholar
  105. Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasm 248:839–847CrossRefGoogle Scholar
  106. Sunitha MSL, Prashant S, Kumar SA, Rao S, Narasu M, Kishor PBK (2013) Cellular and molecular mechanisms of heavy metal tolerance in plants: a brief overview of transgenic plants over-expressing phytochelatins synthase and metallothionein genes. PCBMB 13:33–48Google Scholar
  107. Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatins synthase is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948PubMedPubMedCentralCrossRefGoogle Scholar
  108. Thirumoorthy N, Sunder AS, Kumar KTM, Kumar MS, Ganesh GNK, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9:54–60PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tong X, Yuan L, Luo L, Yin X (2014) Characterization of a selenium-tolerant rhizosphere strain from a novel se-hyperaccumulating plant Cardamine hupingshanesis. Sci World J 2014:1–8Google Scholar
  110. Ueno D, Milner MJ, Yamaji N, Yokosho K, Kayama E, ClemenciaZombrano M, Kaski M, Ebbs S, Kochian LV, Ma JF (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd hyperaccumulating ecotype of Thlaspicaerulescens. Plant J 66:852–862PubMedCrossRefGoogle Scholar
  111. Usha B, Prashanth SR, Parida A (2007) Differential expression of two metallothionein encoding genes during heavy metal stress in the mangrove species, Avicennia marina (Forsk.) Vierh. Curr Sci 93:1215–1219Google Scholar
  112. Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108PubMedCrossRefGoogle Scholar
  113. Usha B, Keeran NS, Harikrishnan M, Kavitha K, Parida A (2011) Characterization of type 3 metallothionein isolated from Porteresia coarctata. Biol Plant 55:119–124CrossRefGoogle Scholar
  114. Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46(12):1915–1923PubMedCrossRefGoogle Scholar
  115. Wang QQ, Wang LH, Han RB, Yang LY, Zhou Q, Huang XH (2015) Effects of bisphenol A on antioxidant system in soybean seedling roots. Environ Toxicol Chem 34(5):1127–1133PubMedCrossRefGoogle Scholar
  116. Wheeler DM, Follett JM (1991) Effect of aluminium on onions, asparagus and squash. J Plant Nutr 14(9):897–912CrossRefGoogle Scholar
  117. Xia B, Shen S, Xue F (2013) Phytoextraction of heavy metals from highly contaminated soils using Sauropus androgynus. Soil Sedim Contamin 22(6):631–640CrossRefGoogle Scholar
  118. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179CrossRefGoogle Scholar
  119. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies soil contaminated by heavy metals. Procedia Environ Sci 16:722–729CrossRefGoogle Scholar
  120. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhang J, Zhang M, Tian S, Lu L, Shohag MJI (2014) Metallothionein 2 (SaMT2) from Sedum alfredii confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS One 9(7):102750CrossRefGoogle Scholar
  122. Zsoldos F, Vashegyi A, Bona L, Pecsvaradi A, Szegletes Z (2000) Growth of and potassium transport in winter wheat and durum wheat as affected by various aluminum exposure times. J Plant Nutr 23(7):913–926CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Khushboo Chaudhary
    • 1
  • Swati Agarwal
    • 1
  • Suphiya Khan
    • 1
  1. 1.Department of Bioscience and BiotechnologyBanasthali UniversityTonkIndia

Personalised recommendations